Capnography and Circulation

  • B. Allaria
  • L. De Filippi
  • S. Greco
Conference paper


An in-depth discussion of the interrelations between haemodynamics and capnography is not possible without mentioning the numerous factors that affect capnographic waves. An incomplete knowledge of these factors might induce us to attribute to haemodynamic variations the capnographic changes related to other events, thereby leading to erroneous interpretations and treatments.


Cardiac Output Cardiopulmonary Bypass Aortic Surgery Aortic Blood Flow Alveolar Dead Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Swedlow DB, Irving SH (1990) Monitoring and patient safety. In: Blitt CD (ed) Monitoring in anesthesia and critical care medicine. Churchill Livingstone 48–60Google Scholar
  2. 2.
    Feng WC, Singh AK (1994) Intraoperative use of end-tidal carbon dioxide tension to assess cardiac output. J Thor Cardiov Surg 108:991–992PubMedGoogle Scholar
  3. 3.
    O’Leary MJ, Ferguson C (1995) Intraoperative use of end-tidal carbon dioxide tension to assess cardiac output. J Thor Cardiov Surg 110:287PubMedCrossRefGoogle Scholar
  4. 4.
    Weil MH, Bisera J, Trevino RP et al (1985) Cardiac output and end-tidal carbon dioxide. Crit Care Med 13:907–909PubMedCrossRefGoogle Scholar
  5. 5.
    Isserles SA, Breen PH (1991) Can changes in end-tidal PCO2 measure changes in cardiac output? Anesth Analg 73:808–814PubMedCrossRefGoogle Scholar
  6. 6.
    Deriaz H, Song Q, Delva F et al (1993) Relationship between cardiac output and end-tidal carbon dioxide tension in anesthetized patients. Anesthesiology 79:A509Google Scholar
  7. 7.
    Shibutani K, Muraoka M, Shirasaki S et al (1994) Do changes in end-tidal PCO2 quantitatively reflect changes in cardiac output? Anesth Analg 79:829–833PubMedCrossRefGoogle Scholar
  8. 8.
    Morimoto Y, Kemmotsen O, Murakami F et al (1993) End-tidal CO2 changes under constant cardiac output during cardiopulmonary resuscitation. Crit Care Med 21:1572–1576PubMedCrossRefGoogle Scholar
  9. 9.
    Shibutani K, Komatsu K, Kubal U (1983) Critical level of oxygen delivery in anesthetized man. Crit Care Med 11:640–643PubMedCrossRefGoogle Scholar
  10. 10.
    Sha M, Katagiri J, Ohmura A et al (1993) Changes in circulation end-tidal CO2 tension following bolus injection of large amounts of CO2 in dogs. Anesthesiology 79:A510Google Scholar
  11. 11.
    Asplin BR, White RD (1995) Prognostic value of end-tidal carbon dioxide pressures during out of hospital cardiac arrest. Ann Emerg Med 25:756–761PubMedCrossRefGoogle Scholar
  12. 12.
    Cantineau JP, Lambert Y, Merckx P et al (1996) End-tidal carbon dioxide during cardiopulmonary resuscitation in humans presenting mostly with asystole: a predictor of outcome. Critical Care Med 24:791–796CrossRefGoogle Scholar
  13. 13.
    Bircher NG, Vukmir RB, Safar P (1993) Arrest interval and sodium bicarbonate influence end-tidal carbon dioxide during CPR in dogs. Anesthesiology 79:A293Google Scholar

Copyright information

© Springer-Verlag Italia 1997

Authors and Affiliations

  • B. Allaria
  • L. De Filippi
  • S. Greco

There are no affiliations available

Personalised recommendations