Skip to main content

Gut Perfusion in Sepsis and Shock

  • Conference paper
Sepsis and Organ Dysfunction
  • 115 Accesses

Abstract

The splanchnic circulation contains about 30% of total blood volume and receives about 30% of the cardiac output. These proportions reveal the great influence the splanchnic vasculature and its regulation have on the systemic vascular behaviour in normal physiological conditions and even more so in states of haemodynamic instability and shock [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks RO, Gallavan RH, Zinner MJ et al (1985) Vasoactive control on the mesenteric circulation. Fed Proc 44:2743–2749

    PubMed  CAS  Google Scholar 

  2. Mcneill JR (1970) Intestinal vasoconstriction after hemorrhage: roles of vasopressin and angiotensin. Am J Physiol 219:1342–1347

    PubMed  CAS  Google Scholar 

  3. Bailey RW, Oshima A, O’Roark WA, Bulkley GB (1987) A reproducible, quantitatable and rapidly reversible model of cardiogenic shock in swine. In: Tumbleson ME (ed) Swine in Biomedical Research. Plenum, New York, pp 363–372

    Google Scholar 

  4. Systemic and splanchnic hemodynamic derangement in the sepsis syndrome (1989) In: Marston A, Bulkley GB, Fiddian-Green RG, Haglund Uh (ed) Splanchnic Ischemia and Multiple Organ Failure. Mosby, St. Louis, pp 101–106

    Google Scholar 

  5. Bergofsky EH (1964) Determination of tissue oxygen tension by hollow visceral tonometers: effects of breathing enriched oxygen mixtures. J Clin Invest 43:193–200

    Article  PubMed  CAS  Google Scholar 

  6. Dawson AM, Trencharrh D, Guz A (1965) Small bowel tonometry: Assessment of small gut mucosal oxygen tension in dog and man. Nature 206:943–944

    Article  PubMed  CAS  Google Scholar 

  7. Boda D, Murânyi L (1959) Gastrotonometry. An aid to the control of ventilation during artificial respiration. Lancet Vol 1:181–182

    Article  PubMed  CAS  Google Scholar 

  8. Fiddian-Green RG, Pittenger G, Whitehouse WM (1982) Back-diffusion of CO2 and its influence on the intramural pH in gastric mucosa. J Surg Res 33:39–48

    Article  PubMed  CAS  Google Scholar 

  9. Antonsson JB, Boyle CC, Kruithoff KL et al (1990) Validation of tonometric measurement of gut intramucosal pH during endotoxaemia and mesenteric occlusion in pigs. Am J Physiol 259:G519–523

    Google Scholar 

  10. Gys T, Hubens A, Neels H et al (1988) The prognostic value of gastric intramural pH in surgical intensive care patients. Crit Care Med 16:1222–1224

    Article  PubMed  CAS  Google Scholar 

  11. Takala JU, Parviainen I, Silohao M et al (1994) Saline PCO2 is an important source of error in the assessment of gastric intramucosal pH. Crit Care Med 22:1877–1879

    PubMed  CAS  Google Scholar 

  12. Heard SO, Helmsmoortel CM, Kent JC et al (1991) Gastric tonometry in healthy volunteers: effects of ranitidine on calculated intramural pH. Crit Care Med 19:271–274

    Article  PubMed  CAS  Google Scholar 

  13. Maynard N, Atkinson S, Mason R et al (1994) Influence of intravenous ranitidine on gastric intramucosal pH in critically ill patients. Crit Care Med 22:A79

    Article  Google Scholar 

  14. Grum CM, Fiddian-Green RG, Pittenger GL et al (1984) Adequacy of tissue oxygenation in intact dog intestine. J Appl Physiol 56:1065–1069

    PubMed  CAS  Google Scholar 

  15. Weil MH, Rackow EC, Trevino R et al (1986) Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 315:153–156

    Article  PubMed  CAS  Google Scholar 

  16. Vallet B, Lund N, Curtis SE et al (1994) Gut and muscle pO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76:793–800

    PubMed  CAS  Google Scholar 

  17. Antonsson JB, Engström L, Rasmussenn I et al (1995) Changes in gut intramucosal pH and gut oxygen extraction ratio in a porcine model of peritonitis and hemorrhage. Crit Care Med 23:1872–1881

    Article  PubMed  CAS  Google Scholar 

  18. Van der Meer TJ, Wang H, Fink MP (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23 :1217–1226

    Article  Google Scholar 

  19. Mela L, Bacalzo LV, Miller LD (1971) Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxic shock. Am J Physiol 220:571–576

    PubMed  CAS  Google Scholar 

  20. Vary TC, Siegel JH, Nakatani T et al (1986) Effect of sepsis on activity of PDH complex in skeletal muscle and liver. Am J Physiol 250:E634–640

    Google Scholar 

  21. Doglio GR, Pusajo JF, Egurrola MA et al (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 19:1037–1040

    Article  PubMed  CAS  Google Scholar 

  22. Marik PE (1993) Gastric intramucosal pH: A better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis. Chest 104:225–229

    Article  PubMed  CAS  Google Scholar 

  23. Gutierrez G, Clark C, Brown SD et al (1994) Effects of dobutamine on oxygen consumption and gastric mucosal pH in septic patients. Am J Respir Crit Care Med 150:324–329

    PubMed  CAS  Google Scholar 

  24. Gutierrez G, Palizas F, Doglio G et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199

    Article  PubMed  CAS  Google Scholar 

  25. Fiddian-Green RG, Amelin PM, Herrmann JB et al (1986) Prediction of the development of sigmoid ischemia on the day of aortic operations. Arch Surg 121:654–660

    Article  PubMed  CAS  Google Scholar 

  26. Bjorck M, Hedberg B (1994) Early detection of major complications after abdominal aortic surgery: Predictive value of sigmoid colon and gastric intramucosal pH monitoring. Br J of Surg 81:25–30

    Article  CAS  Google Scholar 

  27. Fiddian-Green RG, Baker S (1987) Predictive value of measurement of the stomach wall pH for complications after cardiac operations: Comparison with other monitoring. Crit Care Med 15:153–156

    Article  PubMed  CAS  Google Scholar 

  28. Roumen RMH, Vreugde JPC, Goris RJA (1994) Gastric tonometry in multiple trauma patients. J Trauma 36:313–316

    Article  PubMed  CAS  Google Scholar 

  29. Mohsenifar Z, Hay A, Hay J et al (1993) Gastric intramural pH as a predictor of success or failure in weaning patients from mechanical ventilation. Ann Intern Med 119:794–798

    PubMed  CAS  Google Scholar 

  30. Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130:423–429

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Italia

About this paper

Cite this paper

Pálizas, J.F. (2000). Gut Perfusion in Sepsis and Shock. In: Baue, A.E., Berlot, G., Gullo, A., Vincent, JL. (eds) Sepsis and Organ Dysfunction. Springer, Milano. https://doi.org/10.1007/978-88-470-2284-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2284-3_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0096-4

  • Online ISBN: 978-88-470-2284-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics