Skip to main content

The Kidney in Sepsis

  • Conference paper
Sepsis and Organ Dysfunction
  • 112 Accesses

Abstract

The kidney is a significant target organ for the sepsis syndrome and, depending on the definitions used, acute renal failure (ARF) occurs in as many as 15% of patients with critical illness [1] and sepsis appears to be a contributing factor in as many as 43 %[2] . In addition, the kidney is usually the organ that fails first [3]. While the mortality rate of isolated acute renal failure is approximately 10 to 15%, ARF in the setting of sepsis carries a mortality rate between 50 to 90% according to published series. In a recent study [4], the mortality rate among 253 cases of ARF treated in the ICU was 71.5% whereas it was 31.5% among the 495 cases of ARF treated in a non-ICU setting (p = 0.001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brivet FG, Kleinknecht DJ, Loirat P et al (1996) Acute renal failure in intensive care units — causes, outcomes and prognostic factors of hospital mortality: a prospective multicenter study. Crit Care Med 24:192–198

    Article  PubMed  CAS  Google Scholar 

  2. Myers BD, Moran SM (1986) Hemodynamically mediated acute renal failure. N Engl J Med 314:97–100

    Article  PubMed  CAS  Google Scholar 

  3. Tran DD, Oe PL, de Fijter CWH et al (1993) Acute renal failure in patients with acute pancreatitis: Prevalence, risk factors, and outcome. Nephrol Dial Transplant 8:1079–1084

    PubMed  CAS  Google Scholar 

  4. Mccullough PA, Wolyn R, Rocher LL et al (1997) Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med 103:368–375

    Article  PubMed  CAS  Google Scholar 

  5. Dishart MK, Kellum JA (1999) An Evaluation of Pharmacologic Strategies for the Prevention and Treatment of Acute Renal Failure (ARF). Drugs (in press)

    Google Scholar 

  6. Kellum JA (1997) The use of diuretics and dopamine in acute renal failure: a systematic review of the evidence. Crit Care 1:53–59

    Article  PubMed  Google Scholar 

  7. Kellum JA (1998) Primum non nocere and the meaning of modern critical care. Curr Op Crit Care 4:400–405

    Article  Google Scholar 

  8. Kellum JA (1997) Endotoxin and renal blood flow. Blood Purif 15:286–291

    Article  PubMed  CAS  Google Scholar 

  9. Danner RL, Elin RJ, Hosseini JM et al (1991) Endotoxemia in human septic shock. Chest 99:169–175

    Article  PubMed  CAS  Google Scholar 

  10. Hoffman WD, Natanson C (1993) Endotoxin in septic shock. Anesth Analg 77:613–624

    PubMed  CAS  Google Scholar 

  11. Zivot JB, Hoffman WD (1995) Pathogenic effects of endotoxin. New Horizons 3:267–275

    PubMed  CAS  Google Scholar 

  12. Lugon JR, Boim MA, Ramos OL et al (1989) Renal function and glomerular hemodynamics in male endoxemic rats. Kidney Int 36:570–575

    Article  PubMed  CAS  Google Scholar 

  13. Danner RL, Natanson C, Elin RJ et al (1990) P. aeruginosa compared with E. coli produces less endotoxemia but more cardiovascular dysfunction and mortality in a canine model of septic shock. Chest 98:1480–1487

    Article  PubMed  CAS  Google Scholar 

  14. Hoffman WD, Danner RL, Quezado ZM (1996) Role of endotoxemia in cardiovascular dysfunction and lethality: virulent and nonvirulent Escherichia coli challenges in a canine model of septic shock. Infect Immun 64:406–412

    PubMed  CAS  Google Scholar 

  15. Cohen JJ, Black AJ, Wertheim SJ (1990) Direct effects of endotoxin on the function of the isolated perfused rat kidney. Kidney Int 37:1219–1226

    Article  PubMed  CAS  Google Scholar 

  16. Burnier M, Waeber B, Aubert JF et al (1988) Effects of nonhypotensive endotoxemia in conscious rats: Role of prostaglandins. Am J Physiol 254:H509–H516

    PubMed  CAS  Google Scholar 

  17. Walker JF, Cumming AD, Lindsay RM et al (1986) The renal response produced by non hypotensive sepsis in a large animal model. Am J Kidney Dis 8:88–97

    PubMed  CAS  Google Scholar 

  18. Bellomo R, Kellum JA, Wisniewski S, Pinsky MR (1999) Effects of norepinephrine on renal vascular resistance and renal blood flow in normal and endotoxemic dogs. Am J Resp Crit Care Med 159:1186–1192

    PubMed  CAS  Google Scholar 

  19. Hou SH, Bushinsky DA, Wish JB et al (1983) Hospital-acquired renal insufficiency: A prospective study. Am J Med 74:243–248

    Article  PubMed  CAS  Google Scholar 

  20. Iwase K, Takenaka H, Ishizaka I et al (1993) Serial changes in renal function during laparoscopic cholecystectomy. Eur Surg Res 25:203–212

    Article  PubMed  CAS  Google Scholar 

  21. Shipley RE, Study RS (1951) Changes in renal blood flow, extraction of insulin glomerular filtration rate, tissue pressure, and urine flow with acute alterations in renal artery pressure. Am J Physiol 167:676–688

    PubMed  CAS  Google Scholar 

  22. Stone AM, Stahl WM (1970) Renal effects of hemorrhage in normal man. Ann Surg 172: 825–836

    Article  PubMed  CAS  Google Scholar 

  23. Bersten AD, Holt AW (1995) Vasoactive drugs and the importance of renal perfusion pressure. New Horizons 1995;3(4):650–661

    PubMed  CAS  Google Scholar 

  24. Kircheim HR, Ehmke H, Hackenthal E et al (1987) Autoregulation of renal blood flow, glomerular filtration rate and renin release in conscious dogs. Pflugers Arch 410: 441–449

    Article  Google Scholar 

  25. Kelleher SP, Robinette JB, Conger JD (1984) Sympathetic nervous system in the loss of autoregulation in acute renal failure. Am J Physiol 246:F379–F386

    PubMed  CAS  Google Scholar 

  26. Barret BJ (1994) Contrast nephrotoxicity. J Am Soc Nephrol 5:125–137

    Google Scholar 

  27. Solomon R, Werner C, Mann D et al (1994) Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. N Engl J Med 331:1416–1420

    Article  PubMed  CAS  Google Scholar 

  28. Heyman SN, Brezis M, Epstien FH et al (1991) Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int 40:632–642

    Article  PubMed  CAS  Google Scholar 

  29. Weisberg LS, Kurnik PB, Kurnik BR (1993) Dopamine and renal blood flow in radiocontrastinduced nephropathy in humans. Renal Failure 15: 61–68

    Article  PubMed  CAS  Google Scholar 

  30. Heyman SN, Brezis M (1996) The Renal Medulla: Life on the edge of hypoxia. The Third Annual Symposium on Applied Physiology of the peripheral circulation. 96:9

    Google Scholar 

  31. Heyman SN, Fuchs S, Brezis M (1995) The role of medullary ischemia in Acute Renal Failure. New Horizons 3(4):597–607

    PubMed  CAS  Google Scholar 

  32. Barrett BJ, Parfrey PS (1994) Prevention of nephrotoxicity induced by radiocontrast agents. N Engl J Med 331:1449–1450

    Article  PubMed  CAS  Google Scholar 

  33. Weinstein JM, Heyman S, Brezis M (1992) Potential deleterious effect of furosemide in radiocontrast nephropathy. Nephron 62(4):413–415

    Article  PubMed  CAS  Google Scholar 

  34. Kahlmater G, Dahlager JI (1984) Aminoglycoside toxicity — a review of clinical studies pub1 i shed between 1975 and 1982. J Antimicrob Chemother 13 [Suppl A] :9–22

    Google Scholar 

  35. Butler WT, Bennett JE, Alling DW et al (1964) Nephrotoxicity of amphotericin B, early and late events in 81 patients. Ann Intern Med 61:175–187

    PubMed  CAS  Google Scholar 

  36. Anderson WP, Korner PI, Selig SE (1981) Mechanisms involved in the renal responses to intravenous and renal artery infusions of noradrenaline in conscious dogs. J Physiol 321:21–30

    PubMed  CAS  Google Scholar 

  37. Zhang H, Smail N, Cabral A et al (1997) Effects of norepinephrine on regional blood flow and oxygen extraction capabilities during endotoxic shock. Am J Resp Crit Care Med 155: 1965–1971

    PubMed  CAS  Google Scholar 

  38. Martin C, Eon B, Saux P et al (1990) Renal effects of norepinephrine used to treat septic shock patients. Crit Care Med 18:282–285

    Article  Google Scholar 

  39. Desjars P, Pinaud M, Bugnon D, Tasseau F (1990) Norepinephrine therapy has no deleterious renal effects in human septic shock. Crit Care Med 18:1048–1049

    Article  Google Scholar 

  40. Yeh BP, Tomki DJ, Stacy WK et al (1975) Factors influencing sodium and water excretion in uremic man. Kidney Int 7:103–110

    Article  PubMed  CAS  Google Scholar 

  41. Pastan S, Bailey J (1998) Dialysis therapy. N Engl J Med 338:1428–1437

    Article  PubMed  CAS  Google Scholar 

  42. Yagi N, Paganini EP (1998) Acute dialysis and continuous renal replacement: Emergence of a new technology involving the nephrologist in the intensive care setting. Seminars Nephrol 117:306–320

    Google Scholar 

  43. Himmelfarb J, Tolkoff-Rubin N, Chandran P et al (1998) A multicenter comparison of dialysis membranes in the treatment of acute renal failure requiring dialysis. J Amer Soc Nephrol 9:257–266

    CAS  Google Scholar 

  44. Hakim RM, Held PJ, Stannard DC et al (1996) Effect of the dialysis membrane on mortality of chronic hemodialysis patients. Kidney Int 50:566–570

    Article  PubMed  CAS  Google Scholar 

  45. Carreno MP, Stuard S, Bonomini M et al (1996) Cell-associated adhesion molecules as early markers of bioincompatibility. Nephrol Dial Transplant 11:2248–2257

    Article  PubMed  CAS  Google Scholar 

  46. Thylen P, Fernvik E, Lundahl J et al (1996) Modulation of CD 11 b/CD 18 on monocytes and granulocytes following hemodialysis membrane interaction in vitro. Internat J Artif Org 19: 156–163

    CAS  Google Scholar 

  47. Hatala R, Dinh TT, Cook DJ (1997) Single daily dosing of aminoglycosides in immunocompromised adults: a systematic review. Clin Infectious Dis 24:810–815

    Article  CAS  Google Scholar 

  48. Prins JM, Buller HR, Kuijper EJ et al (1993) Once versus thrice daily gentamicin in patients with serious infections. Lancet 341:335–339

    Article  PubMed  CAS  Google Scholar 

  49. Walsh TJ, Hiemenz JW, Seibel NL et al (1998) Amphotericin B lipid complex for invasive fungal infections: Analysis of safety and efficacy in 556 cases. Clinical Infectious Diseases 26:1383–1396

    Article  PubMed  CAS  Google Scholar 

  50. Schoffski P, Freund M, Wunder R et al (1998) Safety and toxicity of amphotericin B in glucose 5% or intralipid 20% in neutropenic patients with pneumonia or fever of unknown origin: randomised study. Brit Med J 317:379–384

    Article  PubMed  CAS  Google Scholar 

  51. Kellum JA, Leblanc M, Angus DC et al (1998) Continuous vs. intermittent renal replacement therapy: Is there a difference in survival? (abstract). Crit Care Med 27:A63

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Italia

About this paper

Cite this paper

Kellum, J.A. (2000). The Kidney in Sepsis. In: Baue, A.E., Berlot, G., Gullo, A., Vincent, JL. (eds) Sepsis and Organ Dysfunction. Springer, Milano. https://doi.org/10.1007/978-88-470-2284-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2284-3_10

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0096-4

  • Online ISBN: 978-88-470-2284-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics