Skip to main content

Physiological Rationale to Prevent Ventilation-Induced Lung Injury

  • Conference paper
Anaesthesia, Pain, Intensive Care and Emergency Medicine - A.P.I.C.E.
  • 222 Accesses

Abstract

Acute respiratory distress syndrome (ARDS) has become a well-recognized condition that can result from a number of different causes, e.g. sepsis, shock, pneumonia, trauma, liquid aspiration, hematologic disorders, smoke inhalation and many others [1]. Despite diverse etiologies of ARDS, the final common pathway results in damage of the alveolar epithelium and endothelium, which leads to high permeability edema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard GR, Artigas A, Brigham KL et al (1994) The American-European consensus conference on ARDS: definitions, mechanics, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824

    PubMed  CAS  Google Scholar 

  2. Holm BA (1992) Surfactant inactivation in adult respiratory distress syndrome. In: Robertson B, van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Amsterdam: Elsevier, 665–684

    Google Scholar 

  3. Ashbaugh DG, Bigelow DB, Petty TL et al (1967) Acute respiratory distress in adults. Lancet 319-323

    Google Scholar 

  4. Montgomery AB, Stager MA, Carrico J et al (1985) Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 132: 485–489

    PubMed  CAS  Google Scholar 

  5. Villar J, Manzano J, Blazquez M et al (1991) Multiple system organ failure in acute respiratory failure. J Crit Care 6: 75–80

    Article  Google Scholar 

  6. Demling RH (1993) Adult respiratory distress syndrome: Current concepts. New Horizons 1: 388–401

    PubMed  CAS  Google Scholar 

  7. Krafft P, Fridrich P, Perner St et al (1996) The acute respiratory distress syndrome: definitions, severity and clinical outcome. Int Care Med 22: 519–529

    Article  CAS  Google Scholar 

  8. Amato MBP, Barbas CSV, Medeiros D et al (1996) Improved survival in ARDS: beneficial effects of a lung protective strategy. Am Rev Respir Crit Care Med 153: A531

    Google Scholar 

  9. Houmes RJ, Bos JAH, Lachmann B (1994) Effects of different ventilator settings on lung mechanics: with special reference to the surfactant system. Appl Cardiopulm Pathophysiol 5: 117–127

    CAS  Google Scholar 

  10. Mead J, Collier C (1959) Relation of volume history of lungs to respiratory mechanics in anesthetized dogs. J Appl Physiol 14: 669–678

    Google Scholar 

  11. Greenfield LJ, Ebert PA, Benson DW (1964) Effect of positive pressure ventilation on surface tension properties of lung extracts. Anesthesia 25: 312–316

    Article  CAS  Google Scholar 

  12. Faridy EE, Permutt S, Riley RL (1966) Effect of ventilation on surface forces in excised dogs’ lungs. JAppl Physiol 21: 1453–1462

    CAS  Google Scholar 

  13. McClenahan JB, Urtnowski A (1967) Effect of ventilation on surfactant and its turnover rate. J Appl Physiol 23: 215–230

    PubMed  CAS  Google Scholar 

  14. Forrest JB (1972) The effect of hyperventilation on pulmonary surface acivity. Br J Anaesth 44: 313–319

    Article  PubMed  CAS  Google Scholar 

  15. Faridy EE (1976) Effect of ventilation on movement of surfactant in airways. Resp Physiol 27: 323–334

    Article  CAS  Google Scholar 

  16. Veldhuizen RAW, Marcou J, Yao LJ et al (1996) Alveolar surfactant aggregate conversion in ventilated normal and injured rabbits. Am J Physiol 270: L152–L158

    PubMed  CAS  Google Scholar 

  17. Lachmann B, Eijking EP, So KL et al (1994) In vivo evaluation of the inhibitory capacity of human plasma on exogenous surfactant function. Intens Care Med 20: 6–11

    Article  CAS  Google Scholar 

  18. Winsel K, Lachmann B, Iwainsky H (1978) Changes in lung and liver phospholipids after intra-venous injection of an anti-lung serum, Proceedings of an International Symposium, Varna, Bulgaria, May 19–22, 1976. Edited by Georgiev GA. Sofia, pp 83-96

    Google Scholar 

  19. Muscerede JG, Mullen JBM, Gan K (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Resp Crit Care Med 149: 1327–1334

    Google Scholar 

  20. John TV, Evander E, Robertson B et al (1997) Surfactant dysfunction makes lung vulnerable to repetitive collapse and reexpansion. Am J Resp Crit Care Med 155: 313–320

    PubMed  Google Scholar 

  21. Nilsson R, Grossman G, Robertson B (1980) Pathogenesis of neonatal lung lesions induced by artificial ventilation: evidence against the role of barotrauma. Respiration 40: 218–225

    Article  PubMed  CAS  Google Scholar 

  22. Tilson MD, Bunke MC, Walker Smith GJ et al (1977) Quantitative bacteriology and pathology of the lung in experimental Pseudomonas pneumonia treated with positive end-expiratory pressure (PEEP). Surgery 82: 133–140

    PubMed  CAS  Google Scholar 

  23. Nahum A, Hoyt J, McKibben A et al (1996) Effect of mechanical ventilation strategy on E. Coli pneumonia in dogs. Am Rev Resp Crit Care Med 153: A530

    Google Scholar 

  24. Simon RH, Paine R (1995) Participation of pulmonary alveolar epithelial cells in lung inflammation. J Lab Clin Med 126: 108–118

    PubMed  CAS  Google Scholar 

  25. Lansman JB, Hallam TJ, Rink Tj (1987) Single stretch activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325: 811–813

    Article  PubMed  CAS  Google Scholar 

  26. Martin DK, Bootcov MR, Campbell TJ et al (1995) Human macrophages contain a stretch-sensitive potassium channel that is activated by adherence and cytokines. J Membrane Biol 147: 305–315

    Article  CAS  Google Scholar 

  27. Felix JA, Woodruff ML, Dirksen ER (1996) Stretch increases inositol 1,4, 5-triphosphate concentration in airway epithelial cells. Am J Resp Cell Mol Biol 14: 296–301

    CAS  Google Scholar 

  28. Imai Y, Kawano T, Miyasaka K et al (1994) Inflammatory chemical mediators during conventional mechanical ventilation and during high frequency oscillatory ventilation. Am J Respir Crit Care Med 150: 1550–1554

    PubMed  CAS  Google Scholar 

  29. von Bethmann AN, Brasch F, Müller KM et al (1996) Barotrauma induced cytokine and eicosanoid-release from the isolated and perfused mouse lung. Am Rev Resp Crit Care Med 153: A529

    Google Scholar 

  30. von Bethmann AN, Brasch F, Müller K (1996) Prolonged hyperventilation is required for release of tumor necrosis factor alpha but not IL-6. Appl Cardiopulm Pathophysiol 6: 171–177

    Google Scholar 

  31. Tremblay L, Valenza F, Ribeiro SP et al (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952

    Article  PubMed  CAS  Google Scholar 

  32. St John RC, Dorinsky PM (1993) Immunologic therapy for ARDS, septic shock and multiple-organ failure. Chest 103: 932–943

    Article  PubMed  CAS  Google Scholar 

  33. Messent M, Griffiths MJ (1992) The pulmonary physician and critical care. 3. Pharmacotherapy in lung injury. Thorax 47: 651–656

    Article  PubMed  CAS  Google Scholar 

  34. Van Asbeck BS, van der Wal WA (1989) Role of oxygen radicals and antioxidants in adult respiratory distress syndrome. Potentials in therapy. Resuscitation 18: S63–S83

    Article  PubMed  Google Scholar 

  35. Christman BW, Bernard GR (1993) Antilipid mediator and antioxidant therapy in adult respiratory distress syndrome. New Horizons 1: 623–630

    PubMed  CAS  Google Scholar 

  36. Goldstein G, Luce JM (1990) Pharmacologic treatment of the adult respiratory distress syndrome. Clin Chest Med 11: 773–787

    PubMed  CAS  Google Scholar 

  37. Hooper RG, Kearl RA (1990) Established ARDS treated with a sustained course of adrenocortical steroids. Chest 98: 1310–1311

    Article  Google Scholar 

  38. Flick MR, Murray JF (1984) High-dose corticosteroid therapy in the adult respiratory distress syndrome. JAMA 251: 1054–1056

    Article  PubMed  CAS  Google Scholar 

  39. Frazee KA, Neidig JA (1995) Ketoconazole to prevent acute respiratory distress syndrome in critically ill patients. Ann Pharmacother 29: 784–786

    PubMed  CAS  Google Scholar 

  40. Yu M, Tomasa G (1995) A double-blind, prospective randomized clinical trial of ketoconazole, a tromboxane synthetase inhibitor, in the prophylaxis of the adult respiratory distress syndrome. Crit Care Med 21: 1635–1642

    Article  Google Scholar 

  41. Gregory TJ, Steinberg KP, Spragg R et al (1997) Bovine surfactant therapy for patients with acute respiratory distress syndrome. Am Rev Respir Crit Care Med 155: 1309–1315

    CAS  Google Scholar 

  42. Amato MBP, Barbas CSV, Medeiros D et al (1996) Improved survival in ARDS: beneficial effects of a lung protective strategy. Am Rev Respir Crit Care Med 153:A531

    Google Scholar 

  43. Amato MBP, Barbas CSV, Pastore L et al (1996) Minimizing barotrauma in ARDS: Protective effects of PEEP and the hazards of driving and plateau pressures. Am Rev Resp Crit Care Med 153: A375

    Google Scholar 

  44. Lachmann B (1992) Open up the lung and keep the lung open. Intens Care Med 18: 319–321

    Article  CAS  Google Scholar 

  45. Dreyfuss D, Soler P, Basset G et al (1988) Intermittent positive pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164

    PubMed  CAS  Google Scholar 

  46. Gommers D, Lachmann B (1995) Surfactant therapy in the adult patient. Curr Opinion Crit Care 1: 57–61

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Italia, Milano

About this paper

Cite this paper

Lachmann, B., Verbrugge, S.J.C. (1998). Physiological Rationale to Prevent Ventilation-Induced Lung Injury. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine - A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2278-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2278-2_16

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0007-0

  • Online ISBN: 978-88-470-2278-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics