Skip to main content

Mechanical implications of viscoelasticity

  • Chapter
  • 296 Accesses

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

Abstract

In 1955, Mount [1] assessed the dynamic work per breath (Wdyn,L) as given by volume-pressure loops in open-chest rats during sinusoidal variations in lung volume. In order to explain the relatively high values of Wdyn,L at the lower frequencies and the progressive decrease in dynamic pulmonary compliance with increasing frequency, he proposed a two-compartment viscoelastic model of the lung which “confers time dependency of the elastic properties.” In 1967 Sharp et al. [2], who were unaware of Mount’s work, proposed a similar viscoelastic model for both lung and chest wall. Until the late 1980s these models were largely ignored. Since then, however, the viscoelastic properties of the respiratory system have been recognized to play an important role in respiratory dynamics. In this review we describe the implications of viscoelastic mechanisms in terms of a) frequency dependence of pulmonary and chest wall elastance and resistance, b) work of breathing, c) passive lung deflation, and d) forced vital capacity (FVC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mount LE (1955) The ventilation flow-resistance and compliance of rat lungs. J Physiol 127:157–167

    PubMed  CAS  Google Scholar 

  2. Sharp JT, Johnson FN, Goldberg NB, Van Lith P (1967) Hysteresis and stress adaptation in the human respiratory system. J Appl Physiol 23:487–497

    PubMed  CAS  Google Scholar 

  3. Otis AB, McKerrow CB, Bartlett RA, Mead J, Mcllroy MB, Selverstone NJ, Radford EP (1956) Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 8:427–443

    PubMed  CAS  Google Scholar 

  4. Mead J (1969) Contribution of compliance of airways to frequency-dependent behaviour of lungs. J Appl Physiol 26:670–673

    PubMed  CAS  Google Scholar 

  5. Bates JHT, Brown K, Kochi T (1987) Identifying a model of respiratory mechanics using the interrupted technique. Proceeding of the 9th American Conference. IEEE Eng Med Biol Soc, pp 1802–1803

    Google Scholar 

  6. D’Angelo E, Calderini E, Torri G, Robatto F, Bono D, Milic-Emili J (1989) Respiratory mechanics in anesthetized-paralyzed humans: effects of flow, volume and time. J Appl Physiol 67:2556–2564

    PubMed  Google Scholar 

  7. D’Angelo E, Robatto FM, Calderini E, Tavola M, Bono D, Torri G, Milic-Emili J (1991) Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol 70:2602–2610

    PubMed  Google Scholar 

  8. D’Angelo E, Prandi E, Tavola M, Calderini E, Milic-Emili J (1994) Chest wall interrupter resistance in anesthetized paralyzed subjects. J Appl Physiol 77:883–887

    PubMed  Google Scholar 

  9. Woolcock AJ, Vincent NJ, Macklem PT (1969) Frequency dependence of compliance as a test for obstruction in small airways. J Clin Invest 48:1097–1106

    Article  PubMed  CAS  Google Scholar 

  10. Ilantos Z, Daroczy B, Suki B, Galgoczy G, Csendes T (1986) Forced oscillatory impedance of the respiratory system at low frequencies. J Appl Physiol 60:123–132

    Article  Google Scholar 

  11. Barnas GM, Yoshino K, Loring SH, Mead J (1987) Impedance and relative displacements of relaxed chest wall up to 4 Hz. J Appl Physiol 62:71–81

    PubMed  CAS  Google Scholar 

  12. Grimby G, Takishima T, Graham W, Macklem PT, Mead J (1968) Frequency dependence of flow resistance in patients with obstructive lung disease. J Clin Invest 47:1455–1465

    Article  PubMed  CAS  Google Scholar 

  13. Bates JHT, Bacconier P, Milic-Emili J (1988) A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol 64:2204–2214

    PubMed  CAS  Google Scholar 

  14. Eissa NT, Ranieri VM, Corbeil C, Chassé M, Robatto FM, Braidy J, Milic-Emili J (1991) Analysis of behavior of the respiratory system in ARDS patients: effects of flow, volume, and time. J Appl Physiol 70:2719–2729

    Article  PubMed  CAS  Google Scholar 

  15. Guérin C, Coussa M-L, Eissa NT, Corbeil C, Chassé M, Braidy J, Matar N, Milic-Emili J (1993) Lung and chest wall mechanics in mechanically ventilated COPD patients. J Appl Physiol 74:1570–1580

    PubMed  Google Scholar 

  16. Shardonofsky FR, Sato J, Bates JHT (1990) Quasi-static pressure-volume hysteresis in the canine respiratory system in vivo. J Appl Physiol 68:2230–2236

    PubMed  CAS  Google Scholar 

  17. Mortola JP, Magnante D, Saetta M (1985) Expiratory pattern of newborn mammals. J Appl Physiol 58:528–533

    PubMed  CAS  Google Scholar 

  18. Otis AB, Fenn WO, Rahn H (1950) The mechanics of breathing in man. J Appl Physiol 2:592–607

    PubMed  CAS  Google Scholar 

  19. Brody AW (1954) Mechanical compliance and resistance ofthe lung-thorax calculated from the flow recorded during passive expiration. Am J Physiol 178:189–196

    PubMed  CAS  Google Scholar 

  20. Mcllroy MB, Tierney DF, Nadel JA (1963) A new method of measurement of compliance and resistance of lungs and thorax. J Appl Physiol 18:424–427

    Google Scholar 

  21. Zin WA, Pengelly LD, Milic-Emili J (1982) Single-breath method for measurement of respiratory system mechanics in anesthetized animals. J Appl Physiol 52:1266

    PubMed  CAS  Google Scholar 

  22. Bates JHT, Decramer M, Chartrand D, Zin WA, Boddener A, Milic-Emili J (1985) Volume-time profile during relaxed expiration in the normal dog. J Appl Physiol 59:732–737

    PubMed  CAS  Google Scholar 

  23. Bates JHT, Decramer M, Chartrand D, Zin WA, Boddener A, Milic-Emili J (1986) Respiratory resistance with histamine challenge by single-breath and forced oscillation methods. J Appl Physiol 61:873–880

    PubMed  CAS  Google Scholar 

  24. Chelucci GL, Brunet F, Dall’Ava-Santucci J, Dhainaut JF, Paccaly D, Armaganidis A, Milic-Emili J, Lockhart A (1991) A single-compartment model cannot describe passive expiration in intubated, paralysed humans. Eur Respir J 4:458–464

    PubMed  CAS  Google Scholar 

  25. Chelucci GL, Dall’Ava-Santucci J, Dhainaut JF, Chelucci A, Allegra A, Paccaly D, Brunet F, Milic-Emili J, Lockhart A (1993) Modelling of passive expiration in patients with adult respiratory distress syndrome. Eur Respir J 6:785–790

    PubMed  CAS  Google Scholar 

  26. Hutchinson J (1846) On capacity of the lungs, and on the respiratory movements, with the view of establishing a precise and easy method of detecting disease by the spirometer. Lancet i:630–632

    Google Scholar 

  27. Tiffeneau R, Pinelli AF (1947) Air circulant et air captif dans Texploration de la fonc- tion ventilatrice pulmonaire. Paris Med 133:624–628

    Google Scholar 

  28. American Thoracic Society (1987) Standardization of spirometry. Am Rev Respir Dis 136:1285–1298

    Article  Google Scholar 

  29. Quanjer PhH (1983) Lung volumes and forced ventilatory flows. Report of Working Party. Standal-dization of lung function tests. European Coal and Steel Community. Eur Respir J 6:5–40

    Google Scholar 

  30. D’Angelo E, Prandi E, Milic-Emili J (1993) Dependence of maximal flow-volume curves on time-course of preceding inspiration. J Appl Physiol 75:1155–1159

    PubMed  Google Scholar 

  31. D’Angelo E, Prandi E, Milic-Emili J (1994) Dependence of maximal flow-volume curves on time-course of preceding inspiration in patients with chronic obstructive lung disease. Am J Respir Crit Care Med 150:1581–1586

    PubMed  Google Scholar 

  32. Wanger JS, Ikle DN, Cherniack RM (1996) The effect of inspiratory maneuvers on expiratory flow rates in health and asthma: Influence of lung elastic recoil. Am J Respir Crit Care Med 153:1302–1308

    PubMed  CAS  Google Scholar 

  33. D’Angelo E, Milic-Emili J, Marazzini L (1996) Effects of bronchomotor tone and gas density on time dependence of forced expiratory vital capacity maneuver. Am J Respir Crit Care Med 154:1318–1322

    PubMed  Google Scholar 

  34. Koulouris NG, Rapakoulias P, Rassidakis A, Dimitroulis J, Gaga M, Milic-Emili J, Jordanoglou J (1997) Dependence of forced vital capacity on time course of preceding inspiration in patients with restrictive lung disease. Eur Respir J 10:2366–2370

    Article  PubMed  CAS  Google Scholar 

  35. Braggion C, Pradal U, Mastella G, Coates AL, Milic-Emili J (1996) Effect of different inspiratory maneuvers on FEV, in patients with cystic fibrosis. Chest 110:342–647

    Article  Google Scholar 

  36. Matsumoto I, Walker S, Sly PD (1996) The influence of breathold on peak expiratory flow in normal and asthmatic children. Eur Respir J 9:1363–1367

    Article  PubMed  CAS  Google Scholar 

  37. Sette L, Delcol G, Comis A, Milic-Emili J, Rossi A, Boner AL (1996) Effect of pattern of preceding inspiration on FEVl in asthmatic children. Eur Respir J 9:1902–1906

    Article  PubMed  CAS  Google Scholar 

  38. Mead J, Turner JM, Macklem PT, Little JB (1967) Significance of the relationship between lung elastic recoil and maximum expiratory flow. J Appl Physiol 22:95–106

    PubMed  CAS  Google Scholar 

  39. ATS (1997) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. Am Rev Respir Dis 136:225–244

    Google Scholar 

  40. Alexander R McNeill (1988) Elastic mechanisms in animal movement. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Milic-Emili, J., D’Angelo, E. (1999). Mechanical implications of viscoelasticity. In: Milic-Emili, J., Lucangelo, U., Pesenti, A., Zin, W.A. (eds) Basics of Respiratory Mechanics and Artificial Ventilation. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2273-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2273-7_9

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0046-9

  • Online ISBN: 978-88-470-2273-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics