The contribution of magnetic resonance imaging to the understanding of multiple sclerosis pathogenesis

  • M. Rovaris
  • G. Iannucci
  • M. Filippi
Conference paper


Magnetic resonance imaging (MRI) is a sensitive tool for diagnosing and evaluating in vivo the dynamics of multiple sclerosis (MS) [1]. However, the low pathological specificity of conventional, T2-weighted MRI inevitably limits its potential for defining the pathophysiology of MS [1], although enhancement on T1-weighted scans after the injection of gadolinium-DTPA (Gd) can be used as a reliable marker of blood-brain barrier (BBB) dysfunction [1].


Multiple Sclerosis Magnetization Transfer Multiple Sclerosis Lesion Magnetization Transfer Ratio Magnetic Resonance Spectroscopic Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller DH, Grossman RI, Reingold SC, McFarland HF (1998) The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 121: 3–24PubMedCrossRefGoogle Scholar
  2. 2.
    McGowan JC, Filippi M, Campi A, Grossman RI (1998) Magnetisation transfer imaging: theory and application to multiple sclerosis. J Neurol Neurosurg Psychiatry 64 (Suppl 1): 566–569Google Scholar
  3. 3.
    Arnold DL, Wolinsky JS, Matthews PM, Falini A (1998) The use of magnetic resonance spectroscopy in the evaluation of the natural history of multiple sclerosis. J Neurol Neurosurg Psychiatry 64 (Suppl 1): S94–S101PubMedGoogle Scholar
  4. 4.
    Hawkins CP, Munro PMG, Mackenzie F et al (1990) Duration and selectivity of blood brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis studied by gadolinium-DTPA and protein markers. Brain 113: 365–378PubMedCrossRefGoogle Scholar
  5. 5.
    Katz D, Taubenberger JK, Raine C et al (1990) Gadolinium-enhancing lesions on magnetic resonance imaging: neuropathological findings. Ann Neurol 28: 243CrossRefGoogle Scholar
  6. 6.
    Nesbit GM, Forbes GS, Scheithauer BW et al (1991) Multiple sclerosis: histopathological and MR and/or CT correlation in 37 cases at biopsy and 3 cases at autopsy. Radiology 180: 467–474PubMedGoogle Scholar
  7. 7.
    Dousset V, Brochet B, Vital A et al (1995) Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. AJNR Am J Neuroradiol 16: 225–231PubMedGoogle Scholar
  8. 8.
    Miller DH, Rudge P, Johnson J et al (1988) Serial gadolinium-enhanced magnetic resonance imaging in multiple sclerosis. Brain 111: 927–939PubMedCrossRefGoogle Scholar
  9. 9.
    Kermode AG, Thompson AJ, Tofts PS et al (1990) Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113: 1477–1489PubMedCrossRefGoogle Scholar
  10. 10.
    Prineas JW, Connel F (1978) The fine structure of chronically active multiple sclerosis plaques. Neurology 28 (Suppl): 68–75PubMedGoogle Scholar
  11. 11.
    Bruck W, Bitsch A, Kolenda H, Bruck Y, Stiefel M, Lassmann H (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42: 783–793PubMedCrossRefGoogle Scholar
  12. 12.
    van Waesberghe JHTM, van Walderveen MAA, Castelijns JA et al (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetisation transfer MR. AJNR Am J Neuroradiol 19: 675–683PubMedGoogle Scholar
  13. 13.
    Barnes D, Munro PMG, Youl BD, et al (1991) The longstanding MS lesion. A quantitative MRI and electron microscopy study. Brain 114: 1271–1280PubMedCrossRefGoogle Scholar
  14. 14.
    Filippi M, Yousry T, Campi A et al (1996) Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with MS. Neurology 46: 379–384PubMedGoogle Scholar
  15. 15.
    Filippi M, Rovaris M, Capra R et al (1998) A multi-centre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis: implications for clinical trials. Brain 121: 2011–2020PubMedCrossRefGoogle Scholar
  16. 16.
    Rovaris M, Mastronardo G, Gasperini C et al (1998) MRI evolution of new MS lesions enhancing after different doses of gadolinium. Acta Neurol Scand 98: 90–93PubMedCrossRefGoogle Scholar
  17. 17.
    Filippi M, Rocca MA, Rizzo G et al (1998) Magnetization transfer ratios in multiple sclerosis lesions enhancing after different doses of gadolinium. Neurology 50: 1289–1293PubMedGoogle Scholar
  18. 18.
    Dousset V, Gayou A, Brochet B, Caille JM (1998) Early structural changes in acute MS lesions assessed by serial magnetization transfer studies. Neurology 51: 1150–1155PubMedGoogle Scholar
  19. 19.
    Filippi M, Rocca MA, Horsfield MA, Comi G (1998) A one year study of new lesions in multiple sclerosis using monthly gadolinium-enhanced MRI. Correlations with changes of T2 and magnetization transfer lesion loads. J Neurol Sci 158: 203–208PubMedCrossRefGoogle Scholar
  20. 20.
    Silver NC, Lai M, Symms MR, Barker GJ, McDonald WI, Miller DH (1998) Serial magnetization transfer imaging to characterize the early evolution of new MS lesions. Neurology 51: 758–764PubMedGoogle Scholar
  21. 21.
    Filippi M, Rocca MA, Comi G (1998) Magnetization transfer ratios of multiple sclerosis lesions with variable durations of enhancement. J Neurol Sci 159: 162–165PubMedCrossRefGoogle Scholar
  22. 22.
    Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43: 809–814PubMedCrossRefGoogle Scholar
  23. 23.
    Goodkin DE, Rooney WD, Sloan R et al (1998) A serial study of new MS lesions and the white matter from which they arise. Neurology 51: 1689–1697PubMedGoogle Scholar
  24. 24.
    Rocca MA, Mastronardo G, Rodegher M, Comi G, Filippi M (1999) Long term changes of MT-derived measures from patients with relapsing-remitting and secondary-progressive multiple sclerosis. AJNR Am J Neuroradiol (in press)Google Scholar
  25. 25.
    Buchem MA, McGowan JC, Kolson DL, Polansky M, Grossman RI (1996) Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn Reson Med 36: 632–636PubMedCrossRefGoogle Scholar
  26. 26.
    Phillips MD, Grossman RI, Miki Y et al (1998) Comparison of T2 lesion volume and magnetization transfer ratio histogram analysis and of atrophy and measures of lesion burden in patients with multiple sclerosis. AJNR Am J Neuroradiol 19: 1055–1060PubMedGoogle Scholar
  27. 27.
    Filippi M, Iannucci G, Tortorella C et al (1999) Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 52: 588–594PubMedGoogle Scholar
  28. 28.
    Rovaris M, Filippi M, Falautano M et al (1998) Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50: 1601–1608PubMedGoogle Scholar
  29. 29.
    Davie CA, Barker GJ, Thompson AJ, Tofts PS, McDonald WI, Miller DH (1997) H-1 magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry 63: 736–742PubMedCrossRefGoogle Scholar
  30. 30.
    Falini A, Calabrese G, Filippi M et al (1998) Benign versus secondary progressive multiple sclerosis: The potential role of proton MR spectroscopy in defining the nature of disability. AJNR Am J Neuroradiol 19: 223–229PubMedGoogle Scholar
  31. 31.
    De Stefano N, Caramanos Z, Preul MC, Francis G, Antel JP, Arnold DL (1998) In vivo differentiation of astrocytic brain tumors and demyelinating lesions of the type seen in multiple sclerosis using H-1 magnetic resonance spectroscopic imaging. Ann Neurol 44: 273–278PubMedCrossRefGoogle Scholar
  32. 32.
    De Stefano N, Matthews PM, Fu LQ et al (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121: 1469–1477PubMedCrossRefGoogle Scholar
  33. 33.
    Narayana PA, Doyle TJ, Lai DJ, Wolinsky JS (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43: 56–71PubMedCrossRefGoogle Scholar
  34. 34.
    Fu L, Matthews PM, De Stefano N et al (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121: 159–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 1999

Authors and Affiliations

  • M. Rovaris
  • G. Iannucci
  • M. Filippi

There are no affiliations available

Personalised recommendations