Advances in membrane biology for continuous renal replacement therapy

  • C. Tetta
  • A. Brendolan
  • V. D’Intini
Conference paper


Acute renal failure (ARF) is increasingly seen as part of the multiple organ dysfunction syndrome (MODS) in critically ill patients [1,2]. MODS is the most-frequent cause of death in patients admitted to intensive care units [3]. Severe sepsis and septic shock are the primary causes of MODS [4, 5] and develop as a result of the host response to infection of Gram-negative and Gram-positive bacteria [6]. Infectious sepsis and non-infectious systemic inflammatory response syndrome (SIRS) encompass a complex mosaic of interconnected events. Molecules such as bacterial lipopolysaccharides (LPS), microbial lipopeptides, microbial DNA, peptidoglycan and lipoteichoic acid trigger interact with the Toll-like receptors and related molecules (MD-2, MyD88), the principal sensors of the innate immune response [7–9]. Stimulus-receptor coupling activates different signal transduction pathways, leading to exacerbated generation of cytokines, and phospholipase A2-dependent, arachidonic acid-derived platelet-activating factor (PAF), leukotrienes, and thromboxanes. At the plasma level, activation of the complement (C3a, C5a, and their desarginated products) and coagulation pathways interacts with the process, as products generated in the fluid phase may in turn trigger and sustain cell activation. Other agents play a role in the pathophysiology of sepsis, such as surface-expressed and soluble adhesion molecules, kinins, thrombin, myocardial depressant substance(s), endorphin, and heat shock proteins.


Acute Renal Failure Systemic Inflammatory Response Syndrome Continuous Renal Replacement Therapy Multiple Organ Dysfunction Syndrome Nephrol Dial Transplant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cosentino F, Chaff C, Piedmonte M (1994) Risk factors influencing survival in ICU acute renal failure. Nephrol Dial Transplant 1994 9 [Suppl 4]:179–182PubMedGoogle Scholar
  2. 2.
    Liano G, Pascual J (1996) Acute renal failure. Madrid Acute Renal Failure Study Group. Lancet 17: 479Google Scholar
  3. 3.
    Bellomo R, Ronco C (1998) Indications and criteria for initiating renal replacement therapy in the intensive care unit. Kidney Int 53 [Suppl 66]:S106-S109Google Scholar
  4. 4.
    The ACCP/SCCM Consensus conference committee: Bone RC, Balk RA, Cerra FB, et al (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644–1655PubMedCrossRefGoogle Scholar
  5. 5.
    Camussi G, Montmcchio G, Diminioni L, Dionigi R (1995) Septic shock: the unravelhng of molecular mechanism. Nephrol Dial Transplant 10:1808–1813PubMedGoogle Scholar
  6. 6.
    Glauser MP, Zanetti G, Baumgartner JD, Cohen J (1991) Septic shock: pathogenesis. Lancet 338:732–736PubMedCrossRefGoogle Scholar
  7. 7.
    Medzhitov R, Preston-Hurlburt P, Janeway C A Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397PubMedCrossRefGoogle Scholar
  8. 8.
    Shimazu R, Akashi S, Ogata H, et al (1999) MD-2 a molecule that confers lipopoly saccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782PubMedCrossRefGoogle Scholar
  9. 9.
    Medzhitov R, Preston-Hurlburt P, Kopp E, et al (1998) My88 is an adaptor protein in the hToliyiL-1 receptor family signaling pathways. Mol Cell 2:253–258PubMedCrossRefGoogle Scholar
  10. 10.
    Kramer P, Wigger W, Rieger J, et al (1977) Arteriovenous hemofiltration: a new and simple method for treatment of over-hydrated patients resistant to diuretics. BClin Wochenschr 55:1121–1122CrossRefGoogle Scholar
  11. 11.
    Von Bommel EFH, Bouvy ND, So KL, et al (1995) Acute dialytic support for the critically ill: intermittent hemodialysis versus continuous arteriovenous hemodiafiltration. Am J Nephrol 15: 192–200PubMedCrossRefGoogle Scholar
  12. 12.
    Bellomo R, Mehta R (1995) Acute renal replacement in the intensive care medicine: now and tomorrow. New Horiz 3:760–767PubMedGoogle Scholar
  13. 13.
    Canaud B, Mion C (1995) Extracorporeal treatment of acute renal failure: methods, indications, quantified and personalized therapeutic approach. Adv Nephrol 24:271–281Google Scholar
  14. 14.
    Matrich GD, Danner RL, Ceska M, et al (1991) Detection of interleukin 8 and tumor necrosis factor in normal humans after intravenous endotoxin: the effect of antiinflammatory agents. J Exp Med 173:1021–1024CrossRefGoogle Scholar
  15. 15.
    Deventer SJH van, Bueller HR, Cate JW ten, et al (1990) Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic and complement pathways. Blood 76: 2520–2526PubMedGoogle Scholar
  16. 16.
    Rosenberg RD, Aird WC (1990) Vascular-bed specific hemostasis and hypercoagulable states. N Engl J Med 19:1555–1564Google Scholar
  17. 17.
    Michie HR, Manogue KR, Spriggs DR, et al (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481–1486PubMedCrossRefGoogle Scholar
  18. 18.
    Suffredini AF, Harpel PC, Parrillo JE (1989) Promotion and subsequent inhibition of plasminogen activator after administration of intravenous endotoxin to normal subjects. N Engl J Med 320: 1165–1172PubMedCrossRefGoogle Scholar
  19. 19.
    Kumasaka T, Quinlan W, Doyle N, et al (1996) Role of the intercellular adhesion molecule (ICAM-1) in endotoxin-induced pneumonitis using ICAM-1 anti-sense oligonucleotides, anti-ICAM-1 monoclonal antibodies and ICAM-1 mutant mice. J Clin Invest 97:2362–2369PubMedCrossRefGoogle Scholar
  20. 20.
    Volk HD, Reinke P, Krausch D, et al (1996) Monocyte deactivation: rationale for a new therapeutic strategy in sepsis. Intensive Care Med [Suppl 4]:S474-S481Google Scholar
  21. 21.
    De Vriese AS, Vanholder RC, Pascual M, et al (1999) Can inflammatory cytokines be removed efficiently by continous renal replacement therapies? Intensive Care Med 25:903–910PubMedCrossRefGoogle Scholar
  22. 22.
    Gasche Y, Pascual M, Suter PM, et al (1996) Complement depletion during haemofiltration with polyacilonitrile membranes. Nephrol Dial Transplant 11:117–119PubMedCrossRefGoogle Scholar
  23. 23.
    Bellomo R, Tipping P, Boyce N (1993) Continuous veno-venous hemofiltration with dialysis removes cytokines from the circulation of septic patients. Crit Care Med 21:522–526PubMedCrossRefGoogle Scholar
  24. 24.
    Goldfarb S, Golper TA (1994) Proinflammatory cytokines and hemofiltration membranes. J Am Soc Nephrol 5:228–232PubMedGoogle Scholar
  25. 25.
    Kellum JA, Johnson JP, Kramer D, et al (1998) Diffusive vs. convective therapy: effects on mediators of inflammation in patients with severe systemic inflammatory response syndrome. Crit Care Med 26:1995–2000PubMedCrossRefGoogle Scholar
  26. 26.
    Braun N, Giolai M, Rosenfeld S, et al (1993) Clearance of interleukin-6 during continuous veno-venous hemofiltration in patients with septic shock. A prospective, controlled clinical study (abstract). J Am Soc Nephrol 4:336Google Scholar
  27. 27.
    Mariano F, Tetta C, Guida GE, et al (2001) Hemofiltration reduces the priming activity on neutrophil chemiluminescence in septic patients. Kidney Int 60:1598–1605PubMedCrossRefGoogle Scholar
  28. 28.
    Ronco C, Tetta C, Lupi A, et al (1995) Removal of platelet-activating factor in experimental continuous arteriovenous hemofiltration. Crit Care Med 23:99–107PubMedCrossRefGoogle Scholar
  29. 29.
    Mariano F, Guida G, Donati D, et al (1999) Production of platelet-activating factor in patients with sepsis-associated acute renal failure. Nephrol Dial Transplant 14:1150–1157PubMedCrossRefGoogle Scholar
  30. 30.
    Heering P, Morgera S, Schmitz FJ, et al (1997) Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intensive Care Med 23:288–296PubMedCrossRefGoogle Scholar
  31. 31.
    Kellum JA, Vergato LA, Dishart MK, et al (1999) Effect of hemofiltration filter adsorption on circulating IL-6 levels in septic rats (abstract). Am J respir Crit Care Med 159:A613CrossRefGoogle Scholar
  32. 32.
    Hoerl WH (2002) Hemodialysis membranes: interleukins, biocompatibility and middle molecules. J Am Soc Nephrol 1:S62-S71Google Scholar
  33. 33.
    De Vriese AS, Colardyn FA, Philippe JJ, et al (1999) Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol 10:846PubMedGoogle Scholar
  34. 34.
    Sander A, Armbruster W, Sander B, et al (1997) Haemofiltration increases IL-6 clearance in early systemic inflammatory response syndrome but does not alter IL-6 and TNF alpha plasma concentrations. Intensive Care Med 23:878–884PubMedCrossRefGoogle Scholar
  35. 35.
    Heering P, Morgera S, Schmitz FJ, et al (1997) Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intensive Care Med 23:288–296PubMedCrossRefGoogle Scholar
  36. 36.
    Cole L, Bellomo R, Joumois D, et al (2002) A phase II randomized, controlled trial of continuous hemofiltration in sepsis. Crit Care Med 30:100–106PubMedCrossRefGoogle Scholar
  37. 37.
    Cavaillon JM, Munoz C, Fitting C, et al (1992) Circulating cytokines: the tip of the iceberg? Circ Shock 38:145–152PubMedGoogle Scholar
  38. 38.
    Cavaillon JM, Adib-Conquy M, Cloez-Tayarani I, Fitting C (2001) Immunosuppression in sepsis and SIRS assessed by ex-vivo cytokine production is not a generalized phenomenon: a review. J Endotoxin Res 7:85–93PubMedGoogle Scholar
  39. 39.
    Mariano F, Tetta C, Guida GE, et al (2001) Hemofiltration reduces the priming activity on neutrophil chemiluminescence in septic patients. Kidney Int 60:1598–1605PubMedCrossRefGoogle Scholar
  40. 40.
    De Vriese AS, Vanholder RC, Pascual M et al (1999) Can inflammatory cytokines be removed efficiently by continuous renal replacement therapies? Intensive Care Med 25:903–910PubMedCrossRefGoogle Scholar
  41. 41.
    Schindler R (2002) Elhnination of cytokines from plasma by ultrafiltration using conventional polysulphone or Diapes® membranes. In: Locatelli F, Ronco C, Tetta C (eds) Polyethersulfone: membranes for multiple clinical applications. Contrib Nephrol 138 (in press)Google Scholar
  42. 42.
    Uchino S, Bellomo R, Goldsmith D, et al (2002) Super high flux hemofiltration: a new technique for cytokine removal. Intensive Care Med 28:651–655PubMedCrossRefGoogle Scholar
  43. 43.
    Tetta C, Cavaillon JM, Schulze M, et al (1998) Removal of cytokines and activated complement components in an experimental model of continuous plasma filtration coupled with sorbent adsorption. Nephrol Dial Transplant 13:1458–1464PubMedCrossRefGoogle Scholar
  44. 44.
    Tetta C, Gianotti L, Cavaillon JM, et al (2000) Coupled plasma filtration-adsorption in a rabbit model of endotoxic shock. Crit Care Med 28:1526–1533PubMedCrossRefGoogle Scholar
  45. 45.
    Ronco C, Brendolan A, Lonnemann G, et al (2002) A pilot smdy of coupled plasma filtration with adsorption in septic shock. Crit Care Med 30:1250–1255PubMedCrossRefGoogle Scholar
  46. 46.
    Lonnemann G, Bechstein M, Linnenweber S, et al (1999) Tumor necrosis factor-alpha during continuous high-flux hemodialysis in sepsis with acute renal failure. Kidney Int 56 [Suppl 72]: S84-S87CrossRefGoogle Scholar
  47. 47.
    Kellum JA, Venkataraman R (2002) Blood purification: an idea whose tune has come? Crit Care Med 30:1387–1388PubMedCrossRefGoogle Scholar
  48. 48.
    Membranes and Filters from Hemodialysis. Database 2001 (2001) Editors: Ronco C, Ghezzi PM, Hoenich NA, Delfino P, Karger Publishers, SwitzerlandGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • C. Tetta
  • A. Brendolan
  • V. D’Intini

There are no affiliations available

Personalised recommendations