2P domain K+ channels: novel targets for volatile general anaesthetics

  • E. Honorè
Conference paper


The volatile anaesthetic-mediated hyperpolarization reduces cell excitability, increases synaptic input conductance, and may contribute to the depression of the central nervous system. Background K+ channels are encoded by the newly discovered family of 2P domain K+ channel subunits. Specific members of this family including TREK-1 and TASK-1, which are expressed in the central and peripheral nervous systems, can be reversibly opened by inhalation anaesthetics. Opening of the 2P domain K+ channels at both pre- and postsynaptic levels may contribute to unconsciousness, amnesia, analgesia, and immobility.


Dorsal Root Ganglion Channel Subunit Cerebellar Granule Neuron Carboxy Terminus Pore Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614PubMedCrossRefGoogle Scholar
  2. 2.
    Harris RA, Mihic SJ, Dildy-Mayfield JE, et al (1995) Actions of anesthetics on ligand-gated ion channels: role of receptor subunit composition. FASEB J 9:1454–1462PubMedGoogle Scholar
  3. 3.
    Belelli D, Pistis M, Peters JA, et al (1999) General anaesthetics action at transmitter-gated inhibitory amino acid receptors. Trends Pharcacol Sci 20:496–502CrossRefGoogle Scholar
  4. 4.
    Nicoli RA, Madison DV (1982) General anaesthetics hyperpolarize neurons in the vertebrate central nervous system. Science 217:1055–1057CrossRefGoogle Scholar
  5. 5.
    Berg-Johnsen J, Langmoen LA (1987) Isoflurane hyperpolarizes neurones in rat and human cerebral cortex. Acta Physiol Scand 130:679–685PubMedCrossRefGoogle Scholar
  6. 6.
    Southan AP, Wann KT (1989) Inhalation anaesthetics block accommodation of pyrfamidal cell discharge in the rat hippocampus. Br J Anaesth 63:581–586PubMedCrossRefGoogle Scholar
  7. 7.
    el-Beheiry H, Puil E (1989) Postsynaptic depression induced by isoflurane in neocortical neurons. Exp Brain Res 75:361–368PubMedCrossRefGoogle Scholar
  8. 8.
    Sirois JE, Lei Q, Talley EM, et al (2000) The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalational anesthetics. J Neurosci 20:6347–6354PubMedGoogle Scholar
  9. 9.
    Franks NP, Lieb WR (1988) Volatile general anaesthetics activate a novel neuronal K+ current. Nature 333:662–664PubMedCrossRefGoogle Scholar
  10. 10.
    Maclver MB, Kending JJ (1991) Anesthetic effects on resting membrane potential are voltage- -dependent and agent-specific. Anesthesiology 74:83–88CrossRefGoogle Scholar
  11. 11.
    Lopes CMB, Franks NP, Lieb WR (1998) Actions of general anaesthetics and arachidonic acid pathway inhibitors on K+ currents activated by volatile anaesthetics and FMRFamide in mollu- scan neurones. Br J Pharmacol 125:309–318PubMedCrossRefGoogle Scholar
  12. 12.
    Winegar BD, Owen DF, Yost CS, et al (1996) Volatile general anesthetics produce hyperpolarization of Aplysia neurons by activation of a discrete population of basehne potassium channels. Anesthesiology 85:889–900PubMedCrossRefGoogle Scholar
  13. 13.
    Franks NP, Lieb WR (1991) Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science 254:427–430PubMedCrossRefGoogle Scholar
  14. 14.
    Sirois JE, Pancrazio JJ, Lynch C, et al (1998) Multiple ionic mechanisms mediate inhibition of rat motoneurones by inhalation anaesthetics. J Physiol 512:851–862PubMedCrossRefGoogle Scholar
  15. 15.
    Patel A J, Honoré E, Lesage F, et al (1999) Inhalational anaesthetics activate two-pore-domain background K+ channels. Nature Neurosci 2:422–426PubMedCrossRefGoogle Scholar
  16. 16.
    Gray AT, Zhao BB, Kindler CH, et al (2000) Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5. Anesthesiology 92:1722–1730PubMedCrossRefGoogle Scholar
  17. 17.
    Lesage F, Terrenoire C, Romey G, et al (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275:28398–28405Google Scholar
  18. 18.
    Gray AT, Winegar BD, Leonoudakis DJ, et al (1998) TOKl is a volatile anesthetic stimulated K+ channel. Anesthesiology 88:1076–1084PubMedCrossRefGoogle Scholar
  19. 19.
    Ketchum KA, Joiner WJ, Sellers AJ, et al (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690–695PubMedCrossRefGoogle Scholar
  20. 20.
    Fink M, Duprat F, Lesage F, et al (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J 15:6854–6862PubMedGoogle Scholar
  21. 21.
    Duprat F, Lesage F, Fink M, et al (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–5471PubMedCrossRefGoogle Scholar
  22. 22.
    Maingret F, Lauritzen I, Patel A, et al (2000) TREK-1 is a heat-activated background K+ channel. EMBO J 19:2483–2491PubMedCrossRefGoogle Scholar
  23. 23.
    Leonoudakis D, Gray AT, Winegar BD, et al (1998) An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. J Neurosci 18:868–877PubMedGoogle Scholar
  24. 24.
    Kim Y, Bang H, Kim D (1999) TBAK-1 and TASK-1, two-pore K+ channel subunits: kinetic properties and expression in rat heart. Am J Physiol 277:H1669-H 1678Google Scholar
  25. 25.
    Girard C, Duprat F, Terrenoire C, et al (2001) Genomic and functional characteristics of novel human pancreatic 2P domain potassium channels. Biochem Biophys Res Commun 282:249–256PubMedCrossRefGoogle Scholar
  26. 26.
    Meadows HJ, Randall AD (2001) Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology 40:551–559PubMedCrossRefGoogle Scholar
  27. 27.
    Kindler CH, Yost CS, Gray AT (1999) Local anaesthetic inhibition of basehne potassium channels with two pore domains in tandem. Anesthesiology 90:1092–1102Google Scholar
  28. 28.
    Rajan S, Wischmeyer E, Liu GX,et al (2000) TASK-3, a novel tandem pore-domain acid-sen- sitive K+ channel: an extracellular histidine as pH sensor. J Biol Chem 275:16650–16657Google Scholar
  29. 29.
    Patel AJ, Honoré E, Maingret F, et al (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 17:4283–4290PubMedCrossRefGoogle Scholar
  30. 30.
    Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiol. Renal Physiol 279:F793-F801PubMedGoogle Scholar
  31. 31.
    Goldstein SAN, Bockenhauer D, O’Kelly I, et al (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184PubMedCrossRefGoogle Scholar
  32. 32.
    Doyle DA, Moráis Cabrai J, Pfuetzner RA, et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77PubMedCrossRefGoogle Scholar
  33. 33.
    Lesage F, Reyes R, Fink M, et al (1996) Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J 15:6400–6407PubMedGoogle Scholar
  34. 34.
    Ruppersberg JP (2000) Intracellular regulation of inward rectifier KK+ channels. Pflugers Arch 441:1–11PubMedCrossRefGoogle Scholar
  35. 35.
    Hille B (1992) Ionic channels of excitable membranes. Sinauer Associates, MassachusettsGoogle Scholar
  36. 36.
    Lesage F, Guillemare E, Fink M, et al (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004–1011PubMedGoogle Scholar
  37. 37.
    Patel AJ, Maingret F, Magnone V, et al (2000) TWIK-2, an inactivating 2P domain K+ channel. J. Biol. Chem. 275:28722–28730Google Scholar
  38. 38.
    Pountney DJ, Gulkarov I, Vega-Saenz de Miera E, et al (1999) Identification and cloning of TWIK-originated similarity sequence (TOSS): a novel human 2-pore KK+ channel principal subunit. FEBS Lett 450:191–196PubMedCrossRefGoogle Scholar
  39. 39.
    Chavez RA, Gray AT, Zhao BB, et al (1999) TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J Biol Chem 274:7887–7892PubMedCrossRefGoogle Scholar
  40. 40.
    Sahnas M, Reyes R, Lesage F, et al (1999) Cloning of a new mouse two-P domain channel subunit and a human homologue with a unique pore structure. J Biol Chem 274:11751–11760CrossRefGoogle Scholar
  41. 41.
    Kim Y, Bang H, Kim D (2000) TASK-3, a new member of the tandem pore K+ channel family. J Biol Chem 275:9340–9347PubMedCrossRefGoogle Scholar
  42. 42.
    Chapman CG, Meadows HJ, Godden RJ, et al (2000) Cloning, locahsation and functional expression of a novel human cerebellum specific, two pore domain potassium channel. Brain Res Mol Brain Res 82:74–83PubMedCrossRefGoogle Scholar
  43. 43.
    Kim D, Fujita A, Horio Y, et al (1998) Cloning and functional expression of a novel cardiac two-pore background K+ channel (cTBAK-1). Circ Res 82:513–518PubMedCrossRefGoogle Scholar
  44. 44.
    Bang H, Kim Y, Kim D (2000) TREK-2, a new member of the mechanosensitive tandem pore K+ channel family. J Biol Chem 275:17412–17419PubMedCrossRefGoogle Scholar
  45. 45.
    Fink M, Lesage F, Duprat F, et al (1998) A neuronal two P domain KK+ channel activated by arachidonic acid and polyunsaturated fatty acid. EMBO J 17:3297–3308PubMedCrossRefGoogle Scholar
  46. 46.
    Reyes R, Duprat F, Lesage F, et al (1998) Cloning and expression of a novel pH-sensitive two pore domain potassium channel from human kidney. J Biol Chem 273:30863–30869PubMedCrossRefGoogle Scholar
  47. 47.
    Decher N, Maaier M, Dittrich W, et al (2001) Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett 24664:1–6Google Scholar
  48. 48.
    Rajan S, Wischmeyer E, Karschin C, et al (2000) THIK-1 and THIK-2, a novel subfamily of tandem pore domain KK+ channels. J Biol Chem 276:7302–7311PubMedCrossRefGoogle Scholar
  49. 49.
    Wei A, Jegla T, Salkoff L (1996) Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35:805–829PubMedCrossRefGoogle Scholar
  50. 50.
    Kunkel MT, Johnstone DB, Thomas JH, et al (2000) Mutants of a temperature-sensitive two-P domain potassium channel. J. Neurosci 20:7517–7524PubMedGoogle Scholar
  51. 51.
    Goldstein S A, Price LA, Rosenthal DN, et al (1996) ORKl, a potassium-selective leak channel with two pore domains cloned fromDrosophila melanogaster by expression in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:13256–13261PubMedCrossRefGoogle Scholar
  52. 52.
    Bargmann C (1998) Neurobiology of theCaenorhabditis elegans genome. Science 282:2028–2033PubMedCrossRefGoogle Scholar
  53. 53.
    Rubin GM, Yandell MD, Wortman JR (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215PubMedCrossRefGoogle Scholar
  54. 54.
    Meadows HJ, Benham CD, Caims W, et al (2000) Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel. Pflugers Arch 439:714–722PubMedCrossRefGoogle Scholar
  55. 55.
    Medhurst AD, Rennie G, Chapman CG, et al (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res Mol Brain Res 86:101–114PubMedCrossRefGoogle Scholar
  56. 56.
    Reyes R, Lauritzen I, Lesage F, et al (2000) Immunolocalization of the arachidonic-acid and mechano-sensitive basehne TRAAK potassium channel in the nervous system. Neurosciences 95:893–901CrossRefGoogle Scholar
  57. 57.
    Lauritzen I, Blondeau N, Heurteaux C, et al (2000) Poly-unsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793PubMedCrossRefGoogle Scholar
  58. 58.
    Maingret F, Fosset M, Lesage F, et al (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381–1387PubMedCrossRefGoogle Scholar
  59. 59.
    Maingi-et F, Patel AJ, Lesage F, et al (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696CrossRefGoogle Scholar
  60. 60.
    Maingret F, Patel AJ, Lesage F, et al (2000) Lysophospholipids open the two P domain mechano-gated K+ channels TREK-1 and TRAAK. J Biol Chem 275:10128–10133PubMedCrossRefGoogle Scholar
  61. 61.
    Buckler K, Williams B, Honoré E (2000) An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol 525:135–142PubMedCrossRefGoogle Scholar
  62. 62.
    Lopes CM, Gallagher PG, Buck ME, et al (2000) Proton block and voltage gating are potassium- -dependent in the cardiac leak channel Kcnk3. J Biol Chem 275:16969–16978PubMedCrossRefGoogle Scholar
  63. 63.
    Millai’ JA, Barratt L, Southan AP, et al (2000) A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc Natl Acad Sci U S A 97:3614–3618CrossRefGoogle Scholar
  64. 64.
    Talley EM, Lei Q, Sirois JE, et al (2000) TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25:399–410PubMedCrossRefGoogle Scholar
  65. 65.
    Maingret F, Patel A, Lazdunski M, et al (2001) The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. EMBO J 20:47–54PubMedCrossRefGoogle Scholar
  66. 66.
    Buckler KJ (1997) A novel oxygen-sensitive potassium current in rat carotid body type I cells. J Physiol 498:649–662PubMedGoogle Scholar
  67. 67.
    Lopez-Bameo J (1996) Oxygen-sensing by ion channels and the regulation of cellular functions. Trends Neurosci 19:435–440Google Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • E. Honorè

There are no affiliations available

Personalised recommendations