Skip to main content

Does technological evolution justify the use of Swan — Ganz catheters in perioperative haemodynamic monitoring?

  • Conference paper
Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.
  • 182 Accesses

Abstract

The measurement of the cardiac output (CO) by thermodilution is based on an ancient method allowing its calculation, the principle of Fick (1829 – 1901) [1]. This author has described the possibility of calculating the CO by measuring the value of a marker, the O2, introduced into the arterial entry, via respiratory diffusion, and recovered at the venous exit, via respiratory exhalation, of the cardiovascular system. The method, indirect at the beginning and direct later, with the introduction of arterial and cardiac catheterization (the reason why A.F. Cournanad, D. W. Richardson, and W. T. Forsman received the Nobel prize in 1956), has allowed the determination of CO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fick A (1870) Ueber tells messung the blutquantums in der herzenventrklen. Sitzung der Phys Med Gezell zu Wirzburg. July 9. P 36

    Google Scholar 

  2. Hamilton WF (1962) Measurement of the cardiac output. Handbook of physiology, section 2 Flight Circulation 1. American Physiological Society, Washington, p 567

    Google Scholar 

  3. Fegler G (1954) Measurement of cardiac output in anesthetized animals by thermodilution method. Q J Exp Physiol 39:153–164

    PubMed  CAS  Google Scholar 

  4. Ganz W, Donoso R, Marcus HS, et al (1971) A new technique for the measurement of cardiac output by thermodilution in man. Am J Cardiol 27:392–396

    Article  PubMed  CAS  Google Scholar 

  5. Stetz CW, Miller RG, Kelly GE, Raffin Y (1982) Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Tell 126:1001–1004

    CAS  Google Scholar 

  6. Backgammon L, Hanique G, Glorious D, et al (1996) Analysis of the accuracy of continue thermo dilution cardiac output measurement. Intensive Care Med 22:125–1129

    Article  Google Scholar 

  7. Vincent JL, Thirion M, BrimouUe S, et al (1986) Thermodilution measurement of right ventricular fraction ejection with has modified pulmonary artery catheter. Intensive Care Med 12:33–38

    Article  PubMed  CAS  Google Scholar 

  8. Dhainaut J, Brunet F, MonsalHer J, et al (1987) Bedside evaluation of right ventricular performance using has rapid computerized thermodilution method. Crit Care Med 15:48–152

    Article  Google Scholar 

  9. Garden F, Brown-Ney D, Hardy H, et al (1991) Combined thermodilution and two-dimensional echocardiographic evaluation of right ventricular function during respiratory support with PEER Chest 99:162–168

    Google Scholar 

  10. Rapper R, Sibbald WJ (1986) Misled by the wedge? The Swan Ganz catheter and the left ventricle preload. Chest 89:427–434

    Article  Google Scholar 

  11. Boldt J, Menges T, Wolibriick M, et al (1994) Is continuous cardiac output measurement using thermodilution reliable in the critically ill patient? Crit Care Med 22:1913–1918

    PubMed  CAS  Google Scholar 

  12. Aranda M, Mihm EG, Garrett S, et al (1998) Continuous cardiac output catheters. Delay in vitro response time after controlled flow change. Anesthesiology 89:1592–1595

    Google Scholar 

  13. Nelson LD (1986) Continuous venous oximetry in surgical patients. Ann Surg 203:329–333

    Article  PubMed  CAS  Google Scholar 

  14. Urban P, Scheidegger D, Gabathuler J, et al (1987) Thermodilution determination of right ventricular volume and fraction ejection: a comparison with biplane angiography. Crit Care Med 15:652–655

    Article  PubMed  CAS  Google Scholar 

  15. Runciman WB, Ilsley AH, Roberts JG (1981) An evaluation of thermodilution cardiac output measurement using the Swan-Ganz catheter. Intensive Anaesth Care 9: 208–220

    CAS  Google Scholar 

  16. Woog RH, Me William DB (1983) A comparison of methods of cardiac output measurement. Intensive Anesth Care 11:141–146

    CAS  Google Scholar 

  17. Elkayan U, Berkley R, Azen S et al (1983) Cardiac output for thermodilution technique. Effect of injectate volumes and temperature on the accuracy and reproducibility in critical ill patient. Chest. 84:418–422

    Google Scholar 

  18. Pearl RG, Rosenthal MH, Nielson L, et al (1986) Effect of injectate volume and temperature on thermodilution cardiac output determination. Anesthesiology 64:798–801

    Article  PubMed  CAS  Google Scholar 

  19. Nelson LD, Anderson HB (1985) Patient selection for iced versus room temperature injectate for thermo dilution cardiac output determination. Crit Care Med 13:182–184

    Article  PubMed  CAS  Google Scholar 

  20. Meisner H, Glanert S, Stckmeier B, et al (1980) Indicator loss temperature during injection in thermodilution system. Respir Exp Med 159:183–196

    Article  Google Scholar 

  21. Kim ME, Linen YC (1980) Determination of catheter wall heat transfer in cardiac output measurement by thermodilution. Clin Exp Pharmacol Physiol 7:383–389

    Article  PubMed  CAS  Google Scholar 

  22. Trush DN, Varlotta D (1992) Thermodilution cardiac output: comparison between automated and manual injection of indicator. J Cardiothorac Vase Anesth 6:17–19

    Article  Google Scholar 

  23. Enghoff E, Sjögren S (1973) Thermal dilution for measurement of cardiac output in the pulmonary artery in man in relationship to choice of indicator volume and injection time. Ups J Med Sci 78:33–37

    Article  PubMed  CAS  Google Scholar 

  24. Stevens JH, Raffin YOUR, Mihm EG, et al (1984) Thermodilution cardiac output measurement. Effects of the respiratory cycle one its reproducibihty. JAMA 253:2240–2242

    Google Scholar 

  25. Okamoto K, Komatsu T, Kumar V, et al (1984) Effects of intermittent positive pressure ventilation one cardiac output measurement by thermodilution. Crit Care Med 14:977–980

    Article  Google Scholar 

  26. Wetzel RC, Latson TW (1985) Major errors in thermodilution cardiac output measurement during rapid infusion volume. Anesthesiology 62:684–687

    Article  PubMed  CAS  Google Scholar 

  27. Bazaral MG, Petre J, Novoa R (1992) Errors in thermodilution cardiac output measurement caused by rapid pulmonary artery temperature decreases after cardio pulmonary by pass. Anesthesiology 77:31–37

    Article  PubMed  CAS  Google Scholar 

  28. Toumadre JP, Chassard D, Muchada R (1997) Overestimation of low cardiac output measured by thermodilution. Br J Anaesth 79:514–516

    Article  Google Scholar 

  29. Groban L, Cheng EY, Mazzeo H, Muzi M (1993) Changes in stroke volume by ice temperature injectate for thermodilution cardiac output determination. Anesthesiology 79:1444–1445

    Article  PubMed  CAS  Google Scholar 

  30. Morris SL, King EG, Grace M, Weiber B (1986) Thermodilution cardiac output; in vitro model of low flow states. Crit Care Med 14:57–59

    Article  Google Scholar 

  31. HiUis LD, Firth BG, Winniford MD (1985) Analysis of factors affecting the variability of Fick versus indicator dilution measurement of cardiac output. Am J Cardiol 56:764–768

    Article  Google Scholar 

  32. Hoel BL (1978) Some aspects of the clinical uses of thermodilution in measuring cardiac output. Scand J Clin Lab Invest 38:383–388

    Article  PubMed  CAS  Google Scholar 

  33. Bjoraker DG, Ketcham TR (1983) Catheter thrombus artifactually decreases thermodilution cardiac output measurements. Anesth Analg 62:1031–1034

    Article  PubMed  CAS  Google Scholar 

  34. Landais H, Marine JP, Rock A, et al (1990) Measurement of cardiac output by the thermodilution method during left thoracotomy in lateral position in the dog. Acta Anaesthesiol Scand 34:158–161

    Article  PubMed  CAS  Google Scholar 

  35. Hasan FM, Malanga H, Corrao WM, Braman SS (1984) Effect of catheter position on thermodilution cardiac output measurements during continuous positive -pressure ventilation. Crit Care Med 12:387–390

    Article  PubMed  CAS  Google Scholar 

  36. Boucek C, Klain M, Obuchowski N, Molner R (1992) Pulmonary artery catheter monitoring during single-lung ventilation in dogs. J Clin Monit 8:209–215

    Article  PubMed  CAS  Google Scholar 

  37. Hedvall G (1978) The appHcability of the thermodilution method for determination of pulmonary blood flow and pulmonary vascular resistance in infants and children with ventricular septal defects. Scand J Clin Lab Invest 31:61–68

    Article  Google Scholar 

  38. Jögi P, Wemer O (1987) Left-to-right shunt assessed by thermo dilution during surgery for congenital heart disease. Scand J Thorac Cardiovasc Surg 21: 203–206

    Article  Google Scholar 

  39. Beyer J, Lamberti JJ, Replogle RL (1976) Validity of thermodilution cardiac output determination: experimental studies with and without pulmonary insufficiency. J Surg 21:313–317

    CAS  Google Scholar 

  40. Kashtan HI, Maitiand H, Salerno TA, et al (1987) Effects of tricuspid regurgitation one thermodilution cardiac output: studies in an animal model. Can J Anaesth 34:246–251

    Article  PubMed  CAS  Google Scholar 

  41. Rahimtoola SH, Swan HJC (1965) Calculation of cardiac output from indicator - dilution curves in presence of mitral regurgitation. Circulation 31:711–718

    Article  PubMed  CAS  Google Scholar 

  42. Samet P, Bemstein WH, Castillo C (1966) Validity of indicator - dilution determination of cardiac output in patients with mitral regurgitation. Circulation 33:410–416

    Article  PubMed  CAS  Google Scholar 

  43. Alfieri O, Subramanian S (1975) Cardiac output determination in infants and small children after open intra cardiac operations. Ann Thorac Surg 19:322–326

    Article  PubMed  CAS  Google Scholar 

  44. Maruschak GF, Potter AM, Schäuble JF, Rogers MC (1982) Overestimation of pediatrics cardiac output by thermal indicator loss. Circulation 65:380–383

    Article  PubMed  CAS  Google Scholar 

  45. Baskoff JD, Maruschak GF (1981) Correction factor for thermodilution determination of cardiac output in children. Crit Care Med 9:870–872

    Article  PubMed  CAS  Google Scholar 

  46. Nadeau S, Noble WH (1986) Limitations of cardiac output measurement by thermodilution. J Can Anaesth Soc 33:84

    Article  Google Scholar 

  47. Hosie KF (1962) Thermal - dilution techniques. Circ Res 5:491–504

    Article  Google Scholar 

  48. Nishikawa T, Dohi S (1992) Haemodynamic change associated thermodilution cardiac output determination during myocardial ischaemia or pulmonary oedema in dogs. Acta Anaesthesiol Scand 36:679–83

    Article  PubMed  CAS  Google Scholar 

  49. Blanloeil Y, Pinaud M (1984) Le calculateur pour mesure du débit cardiaque par thermo dilution; une nouvelle boite de Pandore? Ann Fr Anesth Réanim 3:331–334

    Article  CAS  Google Scholar 

  50. Gnaegi H, Feihl F, Perret C (1997) Intensive care physicians’ insufficient knowledge of right - heart catheterization at the bedside: time to act? Crit Care Med 25:213–220

    Article  PubMed  CAS  Google Scholar 

  51. Swan HJC (1993) Introduction. In: Sprung CL (ed) The pulmonary artery cathéter: methodology and clinical apphcations, 2nd edn. Critical Care Research Associates Closter, NJ, pp 1–9

    Google Scholar 

  52. Friesinger GC, Williams SV, Achord JL, et al (1990) Clinical competence in hemodynamic monitoring. A statement for physicians from the ACP/ACC/AHA task force on clinical privileges in cardiology. J Am Coll Cardiol 15:1460–1464

    Google Scholar 

  53. American Society of Anesthesiologists (1993) Task Forces on Pulmonary Artery Catheteriza- tion: practice guidelines for pulmonary arteiy catheterization. Anesthesiology 78:380–394

    Article  Google Scholar 

  54. Buchman TG, Dellinger RP, Raphaely RC, et al (1992) Undergraduate education in critical care medicine. Crit Care Med 20:1595–1603

    Article  PubMed  CAS  Google Scholar 

  55. Iberti TJ, Fisher EP, Leibowitz AB, et al (1990) A multicenter study of physicians’ knowledge of the pulmonary artery catheter. JAMA 264:2928 -2932

    Google Scholar 

  56. Truman KJ, McCarthy RJ, Spiess BD (1989) Effects of puhnonary artery catheterization on the outcome of patients undergoing coronary surgery. Anesthesiology 70:199–206

    Article  Google Scholar 

  57. Elliot CG, Zinunermann GA Clemer TP (1979) Complications of pulmonary artery catheterization in the care of critically ill patients. Chest 76:6647–6652

    Google Scholar 

  58. Mermel L, Maki D (1994) Infectious complications of Swan Gans pulmonary artery catheters. Am J Res Crit Care Med 149:1020–1036

    Article  CAS  Google Scholar 

  59. Sise M, Holling S, Gorth P, Brimm J (1981) Complications of the flow - direct pulmonary artery catheter: a prospective analysis in 219 patients. Crit Care Med 9:315–318

    Article  PubMed  CAS  Google Scholar 

  60. Boyd KD, Thomas SJ, Gold J, et al (1983) A prospective study of complications of pulmonary artery catheterization in 500 consecutive patients. Chest 84:245–249

    Article  PubMed  CAS  Google Scholar 

  61. Editorial The Board of the Critic Care Medicine (1997) Pulmonary artery catheter consensus conference: consensus statement. Crit Care Med 6:910–925

    Google Scholar 

  62. Connors AF Jr, Speroff T, Dawnson NV, et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 276:889–897

    Article  PubMed  Google Scholar 

  63. Dalen J E, Bone CR (1996) Is it time to pull the pulmonary artery catheter? JAMA 276:916–918

    Article  PubMed  CAS  Google Scholar 

  64. Vender JS, Prielipp RC, Morell R (1996) The pulmonary catheter, is it safe? APSE Newslett Sping 1997:4–5

    Google Scholar 

  65. Dobb GJ (xxxx) The pulmonary artery catheter: too soon for its Swan song. Intensive Care World 13:139–140

    Google Scholar 

  66. Connors AF (2002) Equipoise, power and the pulmonary artery catheter. Intensive Care Med 28:225–226

    Article  PubMed  Google Scholar 

  67. Vincent JL, Dhainaut JF, Perret C, Suter P (1998) Is the pulmonary artery catheter misused? A European view. Crit Care Med 26:1283–1287

    Article  PubMed  CAS  Google Scholar 

  68. Sandham JD, Hull RD, Brant RF (1998) The pulmonary artery catheter takes a great fall. Crit Care Med 26:1288–1289

    Article  PubMed  CAS  Google Scholar 

  69. Tuman KJ; Roizen MF (1997) Outcome assessment and pulmonary artery catheterisation: why does the debate continue? Anesth Analg 84:1–4

    PubMed  CAS  Google Scholar 

  70. Pinsky MR (2002) Functional hemodynamic monitoring. Intensive Care Med 28:386–388

    Article  PubMed  Google Scholar 

  71. American society of Anesthesiologist and the Society of Cardiovascular Anesthesiologist Task Forces on transesophageal echocardiography (1996) Practice guidelines for perioperative echocardiography. Anesthesiology 84:986–1006

    Article  Google Scholar 

  72. Chenzbraum H, Pinto FJ, Schnittger 1(1994) Transesophageal echocardiography in the intensive care unites: impact one diagnosis and decision - making. Clin Cardiol 17:438–440

    Google Scholar 

  73. Suriani RJ, Neustein S, Shore-Lesserson L, Konstadt S (1998) Intraoperative transesophageal echocardiography during not cardiac surgery. J Cardiothoracic Vase Anesth 12:274–280

    Article  CAS  Google Scholar 

  74. Singer M (1993) Esophageal Doppler monitoring of aortic blood flow: Beat - by - beat cardiac output monitoring. Int Anesthesiol Clin 31:99–125

    Article  PubMed  CAS  Google Scholar 

  75. Carrion A, Monchi M, Joly L-M, et al (1998) No Invasive cardiac output monitoring by aortic blood flow determination: evaluation of the Sometec Dynemo 3000 system. Crit Care Med 26: 2066–2072

    Article  Google Scholar 

  76. Lavandier B, Muchada R, Chignier E, et al (1991) Assessment of has potentially noninvasive method for monitoring aortic blood flow in children. Ultrasound Med Biol. 17:107–116

    Article  PubMed  CAS  Google Scholar 

  77. Muchada R, Cathignol D, Lavandier B, et al (1988) Aortic blood flow measurement. Am J Noninvasiv Cardiol 2:24–31

    Google Scholar 

  78. Bemardin B, Tiger F, Fouche R, Mattei M (1998) Continuous noninvasive measurement of aortic blood flow in critically ill patients with has new esophageal ech - Doppler System. J Crit Care 13:177–183

    Article  Google Scholar 

  79. Heerden PV, van, Baker S, Lim IF, et al (2000) Clinical evaluation of the not invasive cardiac output (NICO) monitor in the intensive care unites. Anesth Intensive Care 28:427–430

    Google Scholar 

  80. Odenstedt H, Stenqvist O, Lundin S (2002) Clinical evaluation of partial CO2 rebreathing technique for cardiac output monitoring in critically ill patients. Acta Anaesthesiol Scand 46: 152–159

    Article  PubMed  CAS  Google Scholar 

  81. Bishop MH, Shoemaker WC, Shuleshko J, Wo CC (1996) No invasive cardiac forefinger monitoring in gunshot wound victims. Acad Emerg Med 3:682–688

    Article  PubMed  CAS  Google Scholar 

  82. Mark PE, Pendelton I, Smith R (1997) A comparison of hemodynamic parameters derived from transthoracic bioimpedance with those parameters obtained by thermodilution and angiography. Crit Care Med 25:1545–1550

    Article  Google Scholar 

  83. Wallace AW, Salahieh H, Lawrence TO, et al (2000) Endotracheal cardiac output monitor. Anesthesiology 92:178–189

    Article  PubMed  CAS  Google Scholar 

  84. Tortoli P, Bambi G, Guidi F, Muchada R (2002) Toward a better quantitative measurement of aortic blood flow. Ultrasound Med Biol 28:249–257

    Article  PubMed  Google Scholar 

  85. Muchada R (2002) The anesthesiologist medical doctor and the practice of the general anesthesia. Even today a challenge for the future. Minerva Anestesiol 68:499–503

    PubMed  CAS  Google Scholar 

  86. Saunders DA (1997) One the dangers of monitoring. Gold primum not nocere revisited. Anaesthesia 52:399–400

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this paper

Cite this paper

Muchada, R. (2003). Does technological evolution justify the use of Swan — Ganz catheters in perioperative haemodynamic monitoring?. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2215-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2215-7_10

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0194-7

  • Online ISBN: 978-88-470-2215-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics