Skip to main content

Microcirculation in Critical Illness

  • Conference paper
Sepsis and Organ Dysfunction
  • 108 Accesses

Abstract

Multiple organ failure is frequently observed in critically ill patients, despite the restoration of whole-body haemodynamics. Alterations in microvascular blood flow may play a crucial role in the development of multiple organ failure in these patients. These alterations can have important implications. In rats submitted to 60 min of severe haemorrhage with subsequent restauration of blood volume, Zhao et al. [1] observed that microvascular alterations were more severe in rats that will subsequently die compared to survivors, despite similar whole-body haemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhao KS, Junker D, Delano FA, et al (1985) Microvascular adjustments during irreversible hemorrhagic shock in rat skeletal muscle. Microvasc Res 30: 143–153

    Article  PubMed  CAS  Google Scholar 

  2. Cryer HM, Garrison RN, Kaebnick HW et al (1987) Skeletal microcirculatory responses to hyperdynamic Escherichia coli sepsis in unanesthetized rats. Arch Surg 122: 86–92

    Article  PubMed  CAS  Google Scholar 

  3. Baker CH, Wilmoth FR (1984) Microvascular responses to E. coli endotoxin with altered adrenergic activity. Circ Shock 12: 165–176

    PubMed  CAS  Google Scholar 

  4. Lam CJ, Tyml K, Martin CM et al (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94: 2077–2083

    Article  PubMed  CAS  Google Scholar 

  5. Piper RD, Pitt-Hyde ML, Anderson LA et al (1998) Leukocyte activation and flow behavior in rat skeletal muscle in sepsis. Am J Respir Crit Care Med 157: 129–134

    PubMed  CAS  Google Scholar 

  6. Piper RD, Pitt-Hyde M, Li F et al (1996) Microcirculatory changes in rat skeletal muscle in sepsis. Am J Respir Crit Care Med 154: 931–937

    PubMed  CAS  Google Scholar 

  7. Farquhar I, Martin CM, Lam C et al (1996) Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 61: 190–196

    Article  PubMed  CAS  Google Scholar 

  8. McCuskey RS, Urbaschek R, Urbaschek B (1996) The microcirculation during endotoxemia. Cardiovasc Res 32: 752–763

    PubMed  CAS  Google Scholar 

  9. Drazenovic R, Samsel RW, Wylam ME et al (1992) Regulation of perfused capillary density in canine intestinal mucosa during endotoxemia. J Appl Physiol 72: 259–265

    Article  PubMed  CAS  Google Scholar 

  10. Walley KR (1996). Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues: theory. J Appl Physiol 81: 885–894

    PubMed  CAS  Google Scholar 

  11. Humer MF, Phang PT, Friesen BP et al (1996) Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs. J Appl Physiol 81: 895–904

    PubMed  CAS  Google Scholar 

  12. Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27: 1369–1377

    Article  PubMed  CAS  Google Scholar 

  13. Zuurbier CJ, van Iterson M, Ince C (1999) Functional heterogeneity of oxygen supply-consumption ratio in the heart. Cardiovasc Res 44: 488–497

    Article  PubMed  CAS  Google Scholar 

  14. Vicaut E, Hou X, Payen D et al (1991) Acute effects of tumor necrosis factor on the microcirculation in rat cremaster muscle. J Clin Invest 87: 1537–1540

    Article  PubMed  CAS  Google Scholar 

  15. Groeneveld AB, Hartemink KJ, de Groot MC et al (1999) Circulating endothelin and nitrate-nitrite relate to hemodynamic and metabolic variables in human septic shock. Shock 11: 160–166

    Article  PubMed  CAS  Google Scholar 

  16. Hollenberg SM, Broussard M, Osman J et al (2000) Increased microvascular reactivity and improved mortality in septic mice lacking inducible nitric oxide synthase. Circ Res 86: 774–778

    PubMed  CAS  Google Scholar 

  17. Diaz NL, Finol HJ, Torres SH et al (1998) Histochemical and ultrastructural study of skeletal muscle in patients with sepsis and multiple organ failure syndrome ( MOFS ). Histol Histopathol 13: 121–128

    Google Scholar 

  18. Schneider J (1993) Fibrin-specific lysis of microthrombosis in endotoxemic rats by saruplase. Thromb Res 72: 71–82

    Article  PubMed  CAS  Google Scholar 

  19. Bernard GR, Vincent J-L, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709

    Article  PubMed  CAS  Google Scholar 

  20. Drost EM, Kassabian G, Meiselman HJ et al (1999) Increased rigidity and priming of polymorphonuclear leukocytes in sepsis. Am J Respir Crit Care Med 159: 1696–1702

    PubMed  CAS  Google Scholar 

  21. Astiz ME, DeGent GE, Lin RY et al (1995) Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 23: 265–271

    Article  PubMed  CAS  Google Scholar 

  22. Kirschenbaum LA, Astiz ME, Rackow EC et al (2000) Microvascular response in patients with cardiogenic shock. Crit Care Med 28: 1290–1294

    Article  PubMed  CAS  Google Scholar 

  23. Eichelbronner O, Sielenkamper A, Cepinskas G et al (2000) Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow. Crit Care Med 28: 1865–1870

    Article  PubMed  CAS  Google Scholar 

  24. D orio V, Mendes P, Carlier P et al (1991) Lung fluid dynamics and supply dependency of oxygen uptake during experimental endotoxic shock and volume resuscitation. Crit Care Med 19: 955–962

    Article  PubMed  Google Scholar 

  25. De Backer D, Dubois Mt (2001) Assessment of the microcirculatory flow in patients in the intensive care unit. Curr Opin Crit Care 7: 200–203

    Article  PubMed  Google Scholar 

  26. Freedlander SO, Lenhart CH (1922) Clinical observations on the capillary circulation. Arch Intern Med 29: 12–32

    Article  Google Scholar 

  27. Young JD, Cameron EM (1995) Dynamics of skin blood flow in human sepsis. Intensive Care Med 21: 669–674

    Article  PubMed  CAS  Google Scholar 

  28. Nevière R, Mathieu D, Chagnon JL et al (1996) Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med 153: 191–195

    PubMed  Google Scholar 

  29. Groner W, Winkelman JW, Harris AG et al (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5: 1209–1212

    Article  PubMed  CAS  Google Scholar 

  30. Mathura KR, Vollebregt KC, Boer K et al (2001) Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol 91: 74–78

    PubMed  CAS  Google Scholar 

  31. Langer S, von Dobschuetz E, Harris AG et al (2000) Validation of the orthogonal polarization spectral imaging technique on solid organs. In Messmer K (ed): Orthogonal polarization spectral imaging. Basel, Karger, pp 32–46

    Chapter  Google Scholar 

  32. Laemmel E, Tadayoni R, Sinitsina I et al (2000) Using orthogonal polarization spectral imaging for the experimental study of microcirculation: comparison with intravital microscopy. In Messmer K (ed): Orthogonal Polarization Spectral Imaging. Basel, Karger, pp 50–60

    Chapter  Google Scholar 

  33. Harris AG, Sinitsina I, Messmer K (2000) The Cytoscan(TM) Model E-II, a new reflectance microscope for intravital microscopy: Comparison with the standard fluorescence method. J Vase Res 37: 469–476

    Google Scholar 

  34. De Backer D, Creteur J, Vincent J-L (2000) Microcirculatory alterations in cardiogenic and septic shock. Intensive Care Med 26: 5334 (Abstract)

    Google Scholar 

  35. De Backer D, Preiser J-C, Creteur Jet al (2001) Alterations in microvascular blood flow in septic patients can be reversed by acetylcholine. Am J Respir Crit Care Med 163: A137 (Abstract)

    Google Scholar 

  36. Nakagawa Y, Weil MH, Tang W et al (1998) Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 157: 1838–1843

    PubMed  CAS  Google Scholar 

  37. Weil MH, Nakagawa Y, Tang W et al (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27: 1225–1229

    Article  PubMed  CAS  Google Scholar 

  38. Povoas HE Weil MH, Tang W et al (2000) Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 118: 1127–1132

    Article  PubMed  CAS  Google Scholar 

  39. Jin X, Weil MH, Sun S et al (1998) Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol 85: 2360–2364

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia, Milano

About this paper

Cite this paper

De Backer, D., Dubois, MJ., Creteur, J. (2002). Microcirculation in Critical Illness. In: Baue, A.E., Berlot, G., Gullo, A., Vincent, JL. (eds) Sepsis and Organ Dysfunction. Springer, Milano. https://doi.org/10.1007/978-88-470-2213-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2213-3_9

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0178-7

  • Online ISBN: 978-88-470-2213-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics