Skip to main content

Empirical Antibiotic Treatment in ICU Patients

  • Conference paper
  • 104 Accesses

Abstract

The increasing resistance of more and more bacteria to the antibiotics originally designed to treat them has created a unique challenge for the medical profession and the pharmaceuticals industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kollef MH, Sherman G, Ward S, Fraser VJ (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115: 462–474

    Article  PubMed  CAS  Google Scholar 

  2. Dupont H, Mentec H, Sollet JP, Bleichner G (2001) Impact of appropriateness of initial antibiotic therapy on the outcome of ventilator associated pneumonia. Intensive Care Med 27: 355–362

    Article  PubMed  CAS  Google Scholar 

  3. Ibrahim EH, Sherman G, Ward S, et al (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patients outcome in the ICU setting. Chest 118: 146–155

    Article  PubMed  CAS  Google Scholar 

  4. Handwerger S, Raucher B, Altarac D, et al (1993) Nosocomial outbreak due to Enterococcus faecium highly resistant to vancomycin, penicillin and gentamicin. Clin Infect Dis 16: 750–755

    Article  PubMed  CAS  Google Scholar 

  5. Nosocomial enterococci resistant to vancomycin-United States, 1989–1993 (1993) MMWR 42: 597–599

    Google Scholar 

  6. Iwen PC, Kelly DM, Linder J, et al (1997) Change in prevalence and antibiotic resistance of Enterococcus species isolated from blood cultures over an 8-year period. Antimicrob Agents Chemother 41: 494–495

    PubMed  CAS  Google Scholar 

  7. Murray BE (2000) Vancomycin-resistant enterococcal infections. N Engl J Med 342: 710–721

    Article  PubMed  CAS  Google Scholar 

  8. Hiramatsu K, Hanaki H, Ino T, et al (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40: 135–136

    Article  PubMed  CAS  Google Scholar 

  9. Hiramatsu K, Aritaka N, Hanaki H, et al (1997) Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350: 1670–1673

    Article  PubMed  CAS  Google Scholar 

  10. Rotun SS, McMath V, Schoonmaker DJ, et al (1999) Staphylococcus aureus with reduced susceptibility to vancomycin isolated from a patient with fatal bacteremia. Emerg Infect Dis 5: 147–149

    Article  PubMed  CAS  Google Scholar 

  11. Edmond MB, Wallace SE, McClish DK, et al (1999) Nosocomial bloodstream infections in the United States hospitals: a three-year analysis. Clin Infect Dis 29: 239–244

    Article  PubMed  CAS  Google Scholar 

  12. Vincent J-L, Bihari DJ, Suter PM, et al (1995) The prevalence of nosocomial infection in intensive care units in Europe. JAMA 274: 639–644

    CAS  Google Scholar 

  13. Fluit AC, Jones ME, Schmidt F-J, et al SENTRY Participants Group (2000) Antimicrobial susceptibility and frequency of occurrence of clinical blood isolates in Europe from the SENTRY antimicrobial surveillance program, 1997 and 1998. Clin Infect Dis 30: 454–460

    Google Scholar 

  14. Flournoy DJ, Reinert RL, Bell-Dixon C, Gentry CA (2000) Increasing antimicrobial resistance in gram-negative bacilli isolated from patients in intensive care units. Infect Control Hosp Epidemiol 28: 244–250

    CAS  Google Scholar 

  15. Wu LC, Brook JH (2000) Multiple antibiotic resistant bacteria in New Jersey hospitals, 1992–1.998 (abstract). International Conference on Emerging Infectious Diseases. Atlanta, Georgia, USA, July 16–19, 2000. Centers for Disease Control and Prevention, Georgia, p 75

    Google Scholar 

  16. Centers for Disease Control and Prevention (2000) Laboratory capacity to detect antimicrobial resistance, 1998. MMWR Morb Mortal Wkly Report 48: 1167–1171

    Google Scholar 

  17. Garner JS, Hospital Infection Control Practices Advisory Committee (1996) Guideline for isolation precautions in hospitals. I. Evolution of isolation practices. Am J Infect Control 24: 24–31

    Google Scholar 

  18. Larson EL, APIC Guidelines Committee (1995) APIC guideline for handwashing and hand antisepsis in health care settings. Am J Infect Control 23: 251–269

    Article  Google Scholar 

  19. Hospital Infection Control Practice Advisory Committee (HICPAC) (1995) Recommendations for preventing the spread of vancomycin resistance. Infect Control Hosp Epidemiol 16: 105–113

    Article  Google Scholar 

  20. Quale J, Landman D, Atwood E, et al (1996) Experience with a hospital-wide outbreak of vancomycin-resistant enterococci. Am J Infect Control 24: 372–379

    Article  PubMed  CAS  Google Scholar 

  21. Moulin F, Dumontier S, Saulnier P (1996) Surveillance of intestinal colonization and of infection by vancomycin-resistant enterococci in hospitalized cancer patients. Clin Microbiol Infect 34: 751–752

    Google Scholar 

  22. Bradley SJ, Wilson ALT, Allen MC, et al (1999) The control of hyperendemic glycopeptide-resistant Enterococcus spp. on a haematology unit by changing antibiotic usage. J Antimicrob Chemother 43: 261–266

    Article  PubMed  CAS  Google Scholar 

  23. Wenzel RP, Reagan DR, Bertino JS, et al (1998) Methicillin-resistant Staphylococcus aureus outbreak: a consensus panel’s definition and management guidelines. Am J Infect Control 26: 102–110

    Article  PubMed  CAS  Google Scholar 

  24. CDC interim guidelines for prevention and control of staphylococcal infections associated with reduced susceptibility to vancomycin. (2000) MMWR 48: 1167–1171

    Google Scholar 

  25. James JK, Palmer SM, Levine DP, Rybak MJ (1999) Comparison of conventional dosing versus continuous infusion vancomycin therapy for patients with suspected or documented Gram positive infections. Antimicrob Agents Chemother 40: 696–700

    Google Scholar 

  26. Climo M, Patron RL, Archer G (1999) Combinations of vancomycin and beta-lactams are synergistic in the treatment of vancomycin intermediate susceptible S.aureus Antimicrob Agents Chemother 43 (7): 1747–1753

    CAS  Google Scholar 

  27. Cercenado E, Eliopoulos GM, Wennerstern CB, Moellering RC Jr. (1992) Absence of synergistic activity between ampicillin and vancomycin against highly vancomycin-resistant enterococci. Antimicrob Agents Chemother 36: 2201–2203

    PubMed  CAS  Google Scholar 

  28. Fridkin SK, Welbel SF, Weinstein RA (1996) Magnitude and prevention of nosocomial infections in the intensive care unit. Infect Dis Clin North Am 11: 479–496

    Article  Google Scholar 

  29. Rice LB, Eckstein EC, DeVente J, et al (1996) Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Cleveland Department of Veterans Affairs Medical Center. Clin Infect Dis 23: 118–124

    Article  PubMed  CAS  Google Scholar 

  30. Karas JA, Pillay DG, Muckart D, et al (1996) Treatment failure due to extended spectrum (3-lactamase. J Antimicrob Chemother 37: 203

    Article  PubMed  CAS  Google Scholar 

  31. Jacoby GA, Han P. (1996) Detection of extended-spectrum 3-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 34: 908–911

    PubMed  CAS  Google Scholar 

  32. Burwen DR, Banerjee SN, Gaynes RP, et al (1994) Ceftazidime resistance among selected nosocomial gram-negative bacilli in the United States, J Infect Dis 170: 1622–1625

    Article  PubMed  CAS  Google Scholar 

  33. Piroth L, Aube H, Doise J, et al (1998) Spread of extended-spectrum-lactamase—producing Klebsiella pneumoniae: are (3-lactamase inhibitors of therapeutic value? Clin Infect Dis 27: 76–80

    Article  PubMed  CAS  Google Scholar 

  34. Schiappa DA, Hayden MK, Matushek MG, et al (1996) Ceftazidime-resistant Klebsiella pneumoniae and Escherichia coli bloodstream infection: a case-control and molecular epidemiologic investigation. J Infect Dis 174: 529–536

    Article  PubMed  CAS  Google Scholar 

  35. Monnet D, Biddle JW, Edwards JR, et al (1997) Evidence of interhospital transmission of extended-spectrum-lactam—resistant Klebisella pneumoniae in the United States, 1986–1993. Infect Control Hosp Epidemiol 18: 492–498

    Article  PubMed  CAS  Google Scholar 

  36. Rex JH, Pfaller MA, Rinaldi MG, et al (1993) Antifungal susceptibility testing. Clin Microbiol Rev 6: 367–381

    PubMed  CAS  Google Scholar 

  37. McCaig LF, Hughes JM (1995) Trends in antimicrobial drug prescribing among office-based physicians in the United States. JAMA 273: 214–219

    CAS  Google Scholar 

  38. Johnson EM, Warnock DW, Luker J, et al (1995) Emergence of azole drug resistance in Candida species from HIV-infected patients receiving prolonged fluconazole therapy for oral candidosis. J Antimicrob Chemother 35:103–114 -°

    Google Scholar 

  39. Maenza JR, Keruly JC, Moore RD, et al (1996) Risk factors for fluconazole-resistant candidiasis in human immunodeficiencyvirus-infected patients. J Infect Dis 173: 219–225

    Article  PubMed  CAS  Google Scholar 

  40. Abi-Said D, Anaissie E, Uzon O, et al (1997) The epidemiology of hematogenous candidiasis caused by different Candida species. Clin Infect Dis 24: 1122–1128

    Article  PubMed  CAS  Google Scholar 

  41. Fridkin SK, Jarvis WR (1996) Epidemiology of nosocomial fungal infections. Clin Microbiol Rev 9: 499–511

    PubMed  CAS  Google Scholar 

  42. Pfaller MA, Jones RN, Messer SA, et al (1998) National surveillance of nosocomial blood stream infection due to Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn Microbiol Infect Dis 31: 327–332

    Article  PubMed  CAS  Google Scholar 

  43. World Health Organization. (2000) Overcoming Antimicrobial Resistance - World Health Report on Infectious Diseases 2000. Available at http://www.who.int/infectious-disease-report/2000/index.html. World Health Organization, Geneva

    Google Scholar 

  44. Interagency Task Force on Antimicrobial Resistance (2000) Draft public health action plan to combat antimicrobial resistance. I Domestic issues. Available at website: http://www.cdc.gov/drugresistance/actionplan/index.htm Atlanta. Centers for Disease Control and Prevention

    Google Scholar 

  45. Association for the Prudent Use of Antibiotics. (2000) Response to the Draft Public Health Action Plan on Antimicrobial Resistance. Available at APUA website: http://www.healthsci.tufts.edu/apua/apua.html

    Google Scholar 

  46. Goldmann DA, Weinstein RA, Wenzel RP, et al (1996) Strategies to prevent and control the emergence and spread of antimicrobial-resistant microorganisms in hospitals. JAMA 275: 234–240

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia, Milano

About this paper

Cite this paper

Grossi, P. (2002). Empirical Antibiotic Treatment in ICU Patients. In: Baue, A.E., Berlot, G., Gullo, A., Vincent, JL. (eds) Sepsis and Organ Dysfunction. Springer, Milano. https://doi.org/10.1007/978-88-470-2213-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2213-3_11

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0178-7

  • Online ISBN: 978-88-470-2213-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics