Skip to main content

Assessment of the Viscoelastic Constants Using the Rapid Airway Occlusion Technique

  • Chapter
Book cover Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.

Abstract

During mechanical ventilation, the technique of rapid airway occlusion (RAO) during constant flow inflation (1–4) and the “single-breath” method (5–9) are probably the most commonly employed for measuring the respiratory mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mead J, Whittenberger JL (1954) Evaluation of airway interruption technique as a method for measuring pulmonary airflow resistance. J Appl Physiol 6:408–416

    PubMed  CAS  Google Scholar 

  2. Bates JHT, Rossi A, Milic-Emili J (1985) Analysis of the behaviour of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848

    PubMed  CAS  Google Scholar 

  3. Bates JHT, Baconnier P, Milic-Emili J (1988) A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol 64:2204–2214

    PubMed  CAS  Google Scholar 

  4. Kochi T, Okubo S, Zin A, Milic-Emili J (1988) Flow and volume dependence of pulmonary mechanics in anaesthetized cats. J Appl Physiol 64:441–450

    PubMed  CAS  Google Scholar 

  5. Zin WA, Pengelly L, Milic-Emili J (1982) Single breath method for measurement of respiratory mechanics in anesthetized animals. J Appl Physiol: Respirât Environ Exercise Physiol 52:1266–1277

    PubMed  CAS  Google Scholar 

  6. Behrakis P, Higgs B, Bay dur A, Zin WA, Milic-Emili J (1983) Respiratory mechanics during halothane anesthesia and anesthesia-paralysis in humans. J Appl Physiol: Respirât Environ Exercise Physiol 55:1085–1092

    PubMed  CAS  Google Scholar 

  7. Bates JHT, Decramer M, Chartrand D, Zin W, Boddener A, Mihc-Emih J (1985) Volume-time profile during relaxed expiration in the normal dog. J Appl Physiol 59:732–737

    PubMed  CAS  Google Scholar 

  8. Chelucci G, Brunet F, Dall’Ava-Santucci J, Dhainaut J, Paccaly D, Armaganidis A, Milic-Emili J, Lockhart A (1991) A single-compartment model cannot describe passive expiration in intubated, paralysed humans. Eur Respir J 4:458–464

    PubMed  CAS  Google Scholar 

  9. Guttmann J, Eberhard L, Fabry B, Bertschmann W, Zeravik J, Adolph M, Eckart J, Wolff G (1995) Time constant/volume relationship of passive expiration in mechanically ventilated ARDS patients. Eur Respir J 8:114–120

    Article  PubMed  CAS  Google Scholar 

  10. Bates JHT, Brown K, Kochi T (1987) Identifying a model of respiratory mechanics using the interrupter technique. Proceedings of the Ninth American Conference, Engineering Medical Biology Society 1802–1803

    Google Scholar 

  11. Bates JHT, Ludwig MS, Sly PD, Brown K, Martin JG, Fredberg JJ (1988) Interrupted resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol 65:408–414

    PubMed  CAS  Google Scholar 

  12. Ludwig MS, Dreshaj I, Solway J, Munoz A, Ingram RH (1987) Partitioning of pulmonary resistance during constriction in the dog: effect of volume history. J Appl Physiol 62:807–815

    PubMed  CAS  Google Scholar 

  13. D’Angelo E, Calderini E, Torri G, Robatto FM, Bono D, Mihc-Emili J (1989) Respiratory mechanics in anesthetized paralyzed humans: effects of flow, volume, and time. J Appl Physiol 67:2556–2564

    PubMed  Google Scholar 

  14. D’Angelo E, Robatto FM, Calderini E, Tavola M, Bono D, Torri G, Milic-Emi H J (1991) Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol 70: 2602–2610

    PubMed  Google Scholar 

  15. Similovski T, Levy P, Corbeil C, Albala M, Pariente R, Derenne JP, Bates JHT, Jonson B, Milic-Emili J (1989) Viscoelastic behaviour of lung and chest wall in dogs determined by flow interruption. J Appl Physiol 67:2219–2229

    Google Scholar 

  16. Eissa NT, Ranieri VM, Corbeil C, Chassé M, Robatto FM, Braidy J, Mihc-Emili J (1991) Analysis of behaviour of the respiratory system in ARDS patients: effect of the flow, volume and time. J Appl Physiol 70;6:2719–2729

    PubMed  CAS  Google Scholar 

  17. Tantucci C, Corbeil C, Chassé M, et al (1992) Flow and volume dependence of respiratory system flow resistance in ARDS patients. Am Rev Respir Dis 145:355–360

    PubMed  CAS  Google Scholar 

  18. Tantucci C, Corbeil C, Chassé M, et al (1991) Flow resistance in COPD patients in acute respiratory failure: effects of flow and volume. Am Rev Respir Dis 144:384–389

    Article  PubMed  CAS  Google Scholar 

  19. Bates JHT, Brown K, Kochi T (1989) Respiratory mechanics in the normal dog determined by expiratory flow interruption. J Appl Physiol 67:2276–2285

    PubMed  CAS  Google Scholar 

  20. Mount LE (1955) The ventilation flow-resistance and compliance of rat lungs. J Physiol Lond 127:157–167

    PubMed  CAS  Google Scholar 

  21. Sharp JT, Johnson N, Goldberg NB, Van Lith P (1967) Hysteresis and stress adaptation in the human respiratory system. J Appl Physiol 23:487–497

    PubMed  CAS  Google Scholar 

  22. Reiner M (1958) Rheology. Handbook of Physics. McGraw-Hill, 3:40–49

    Google Scholar 

  23. Otis AB, McKerrow CB, Bartlett RA, Mead J, Mcllroy MB, Selverstone NJ, Radford EP (1956) Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 8:427–443

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Antonaglia, V., Beltrame, F., Lucangelo, U., Grop, A. (1996). Assessment of the Viscoelastic Constants Using the Rapid Airway Occlusion Technique. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2203-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2203-4_36

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-3-540-75014-7

  • Online ISBN: 978-88-470-2203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics