Skip to main content

Mathematical Models in Respiratory Mechanics

  • Chapter
  • 172 Accesses

Abstract

The respiratory system, as well as its pulmonary and chest wall components, is comprised of a multitude of elements. The undisputed necessity to interpret the meaning of measurable variables such as volume, airflow, and pressure under both physiological and pathological conditions has imposed the need for relatively simple models that should be able to describe as accurately as possible the mechanical behaviour of the system. The components of such models and their associated parameters should have reasonable physiological counterparts, naturally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sharp JT, Henry JP, Sweany SK, Meadows WR, Pietras RJ (1964) Total respiratory inertance and its gas and tissue components in normal and obese men. J Appl Physiol 43:503–509

    CAS  Google Scholar 

  2. Hantos Z, Daroczy B, Klebniczki J, Dombos K, Nagy S (1982) Parameter estimation of transpulmonary mechanics by a nonUnear inertive model. J Appl Physiol 52:955–963

    PubMed  CAS  Google Scholar 

  3. Bates JHT, Shardonofsky R, Stewart DE (1989) The low-frequency dependence of respiratory system resistance and elastance in normal dogs. Respir Physiol 78:369–382

    Article  PubMed  CAS  Google Scholar 

  4. Mead J, Whittenberger JL (1953) Physical properties of human lungs measured during spontaneous respiration. J Appl Physiol 5:779–796

    Google Scholar 

  5. Zin WA, Pengelly LD, Milic-Emili J (1982) Single-breath method for measurement of respiratory mechanics in anesthetized animals. J Appl Physiol 52:1266–1271

    PubMed  CAS  Google Scholar 

  6. Hughes R, May AJ, Widdicombe JG (1959) Stress relaxation in rabbits’ lungs. J Physiol (Lond) 146:85–97

    CAS  Google Scholar 

  7. Don HF, Robson JG (1965) The mechanics of the respiratory system during anesthesia. Anesthesiol 26:168–178

    Article  CAS  Google Scholar 

  8. Bates JHT, Rossi A, Mihc-Emili J (1985) Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848

    PubMed  CAS  Google Scholar 

  9. Bates JHT, Decramer M, Chartrand D, Zin WA, Böddener A, Milic-Emili J (1985) The volume-time profile during relaxed expiration in the normal dog. J Appl Physiol 59:732–737

    PubMed  CAS  Google Scholar 

  10. Chelucci GL, Brunet F, Dall’Ava-Santucci J, Dhainaut JF, Paccaly D, Armaganidis A, Milic-Emili J, Lockhart A (1991) A single-compartment model cannot describe passive expiration in intubated, paralysed humans. Eur Respir J 4:458–464

    PubMed  CAS  Google Scholar 

  11. Barnas GM, Yoshino K, Loring SH, Mead J (1987) Impedance and relative displacements of relaxed chest wall up to 4 Hz. J Appl Physiol 62:71–81

    PubMed  CAS  Google Scholar 

  12. Brusasco V, Warner DO, Beck KC, Rodarte JR, Rehder K (1989) Partitioning of pulmonary resistance in dogs: effects of tidal volume and frequency. J Appl Physiol 66:1190–1197

    Article  PubMed  CAS  Google Scholar 

  13. Hantos Z, Daroczy B, Suki B, Galgoczy G, Csendes T (1986) Forced oscillatory impedance of the respiratory system at low frequencies. J Appl Physiol 60:123–132

    Article  PubMed  CAS  Google Scholar 

  14. Hantos Z, Daroczy B, Suki B, Nagy S (1987) Low-frequency respiratory mechanical impedance in the rat. J Appl Physiol 63:36–43

    PubMed  CAS  Google Scholar 

  15. Otis AB, McKerrow CB, Bartlett RA, Mead J, Mcllroy MB, Selverstone NJ, Radford EP (1956) Mechanical factors in the distribution of pulmonary ventilation. J Appl Physiol 8: 427–444

    PubMed  CAS  Google Scholar 

  16. Bates JHT, Baconnier P, Milic-Emili J (1988) A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol 64:2204–2214

    PubMed  CAS  Google Scholar 

  17. Mead J (1969) Contribution of comphance of airways to frequency-dependent behavior of lungs. J Appl Physiol 26:670–673

    PubMed  CAS  Google Scholar 

  18. Eyles JG, Pimmel RL (1981) Estimating respiratory mechanical parameters in parallel compartment models. IEEE Trans Biomed Eng 28:313–317

    Article  PubMed  CAS  Google Scholar 

  19. Peslin R (1986) Methods for measuring total respiratory impedance by forced oscillations. Bull Eur Physiopathol Respir 22:621–631

    PubMed  CAS  Google Scholar 

  20. Michaelson ED, Grassman ED, Peters WR (1975) Pulmonary mechanics by spectral analysis of forced random noise. J Clin Invest 56:1210–1230

    Article  PubMed  CAS  Google Scholar 

  21. Lorino AM, Lorino H, Harf A (1994) A synthesis of the Otis, Mead, and Mount mechanical respiratory models. Respir Physiol 97:123–133

    Article  PubMed  CAS  Google Scholar 

  22. Bates JHT, Ludwig MS, Sly PD, Brown K, Martin JG, Fredberg JJ (1988) Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol 65:408–414

    PubMed  CAS  Google Scholar 

  23. Saldiva PHN, Zin WA, Santos RLB, Eidelman DH, Milic-Emili J (1992) Alveolar pressure measurement in open-chest rats. J Appl Physiol 72:302–306

    PubMed  CAS  Google Scholar 

  24. Mount LE (1955) The ventilation flow-resistance and compliance of rat lungs. J Physiol (Lond) 127:157–167

    CAS  Google Scholar 

  25. Bates JHT, Brown KA, Kochi T (1989) Respiratory mechanics in the normal dog determined by expiratory flow interruption. J Appl Physiol 67:2276–2285

    PubMed  CAS  Google Scholar 

  26. Hildebrandt J (1970) Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J Appl Physiol 28:365–372

    PubMed  CAS  Google Scholar 

  27. Fredberg JJ, Stamenovic D (1989) On the imperfect elasticity of lung tissue. J Appl Physiol 67:2408–2419

    PubMed  CAS  Google Scholar 

  28. Sharp JT, Johnson FN, Goldberg NB, van Lith P (1967) Hysteresis and stress adaptation in the human respiratory system. J Appl Physiol 23:487–497

    PubMed  CAS  Google Scholar 

  29. Similowski T, Bates JHT (1991) Two-compartment modelling of respiratory system mechanics at low frequencies: gas redistribution of tissue rheology? Eur Respir J 4:353–358

    PubMed  CAS  Google Scholar 

  30. Navajas D, Farre R, Cannet J, Roger M, Sanchis J (1990) Respiratory input impedance in anesthetized paralyzed patients. J Appl Physiol 69:1372–1379

    PubMed  CAS  Google Scholar 

  31. Shardonofsky F, Sato J, Bates JHT (1990) Quasi-static pressure-volume hysteresis in the canine respiratory system in vivo. J Appl Physiol 68:2230–2236

    PubMed  CAS  Google Scholar 

  32. Hildebrandt J (1969) Dynamic properties of air-filled excised cat lung determined by liquid plethysmography. J Appl Physiol 27:246–250

    PubMed  CAS  Google Scholar 

  33. Hildebrandt J (1969) Comparison of mathematical models for cat lung and viscoelastic balloon derived by Laplace transform methods from près sure-volume data. Bull Math Biophys 31:651–667

    Article  PubMed  CAS  Google Scholar 

  34. Rohrer R (1915) Der Strömungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmässigen Verzweigung des Bronchialsystems auf den Atmungsverlauf in verschiedenen Lungenbezirken. Arch Ges Physiol 162:225–300

    Article  Google Scholar 

  35. Suki B, Bates JHT (1991) A nonlinear viscoelastic model of lung tissue mechanics. J Appl Physiol 71:826–833

    PubMed  CAS  Google Scholar 

  36. Hantos Z, Daroczy B, Suki B, Nagy S, Rredberg JJ (1992) Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol 72:168–178

    Article  PubMed  CAS  Google Scholar 

  37. Lutchen KR, Suki B, Zhang Q, Petak R, Caroczy B, Hantos Z (1994) Airway and tissue mechanics during physiological breathing and bronchoconstriction in dogs. J Appl Physiol 77:373–385

    PubMed  CAS  Google Scholar 

  38. Rotger M, Peslin R, Navajas D, Rarré R (1995) Lung and respiratory impedance at low frequency during mechanical ventilation in rabbits. J Appl Physiol 78:2153–2160.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Zin, W.A., Gomes, R.F.M. (1996). Mathematical Models in Respiratory Mechanics. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2203-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2203-4_34

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-3-540-75014-7

  • Online ISBN: 978-88-470-2203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics