Skip to main content

Standardisation, Optimisation and Organisation of Magnetic Resonance Imaging for Monitoring Clinical Trials

  • Conference paper
Book cover Magnetic Resonance Techniques in Clinical Trials in Multiple Sclerosis

Part of the book series: Topics in Neuroscience ((TOPNEURO))

  • 67 Accesses

Abstract

The use of magnetic resonance imaging (MRI) in clinical trials for multiple sclerosis (MS) was pioneered by Paty et al. [1] at the University of British Columbia, Canada, following studies of the correlation of the MRI appearance of demyelinating lesions with both animal models and postmortem material [2, 3]. Without this ground-breaking work, much of the testing of new therapeutic agents seen today would be severely retarded, with much longer assessment periods, and a much more difficult pathway of the drug from laboratory to market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paty DW, Li DKB, the UBC MS/MRI Study Group, the IFNb Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43: 662–667

    Article  PubMed  CAS  Google Scholar 

  2. Stewart WA, Hall LD, Berry K, Paty DW (1984) Correlation between NMR scan and brain slice data in multiple sclerosis. Lancet ii: 412

    Google Scholar 

  3. Stewart WA, Alvord EC, Hruby S, et al. (1991) Magnetic resonance imaging of experimental allergic encephalomyelitis in primates. Brain 114: 1069–1096

    Article  PubMed  Google Scholar 

  4. Filippi M, Horsfìeld MA, Ader HJ, et al. (1998) Guidelines for using quantitative meas of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 43: 499–506

    Article  PubMed  CAS  Google Scholar 

  5. Edelstein WA, Glover GH, Hardy CJ, Redington RW (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3: 604–618

    Article  PubMed  CAS  Google Scholar 

  6. van Walderveen MAA, Barkhof F, Hommes OR, et al. (1995) Correlating MRI and clinical disease activity in multiple sclerosis: Relevance of hypointense lesions on short TR/short TE (T1-weighted) spin-echo images. Neurology 45: 1684–1690

    Article  PubMed  Google Scholar 

  7. van Buchem MA, McGowan JC, Kolson DL, et al. (1996) Quantitative volumetric magnetization transfer analysis in multiple sclerosis: Estimation of macroscopic and microscopic disease burden. Magn Reson Med 36: 632–636

    Article  PubMed  Google Scholar 

  8. Barker GJ, Tofts PS (1992) Semiautomated quality assurance for quantitative of magnetic resonance imaging. Magn Reson Imaging 10: 585–595

    Article  PubMed  CAS  Google Scholar 

  9. Filippi M, van Waesberghe JH, Horsfield MA, et al. (1997) Interscanner\ variation in brain MRI lesion load measurements in MS: Implications for clinical trials. Neurology 49: 371–377

    Article  PubMed  CAS  Google Scholar 

  10. Kamber M, Shinghal R, Collins DL, et al. (1995) Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images. IEEE Trans Med Imag 14: 442–453

    Article  CAS  Google Scholar 

  11. Bottomley PA, Hardy CJ, Argersinger RE, Allen-Moore G (1987) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz. Med Phys 14: 425–448

    Article  Google Scholar 

  12. Thorpe JW, Halpin SF, MacManus DG, et al. (1994) A comparison between fast and conventional spin-echo in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol 18:959–963

    Google Scholar 

  13. Rovaris M, Gawne-Cain ML, Wang L, Miller DH (1997) A comparison of conventional and fast spin-echo sequences for the measurement of lesion load in multiple sclerosis using a semi-automated contouring technique. Neuroradiology 39: 161–165

    Article  PubMed  CAS  Google Scholar 

  14. Simmons A, Tofts PS, Barker GJ, Arridge SR (1994) Sources of intensity nonuniformity in spin echo images at 1.5 T. Magn Reson Med 32: 121–128

    Article  CAS  Google Scholar 

  15. Rydberg JN, Reiderer SJ, Rydberg CH, Jack CR (1995) Contrast optimisation of fluidattenuated inversion recovery (FLAIR) imaging. Magn Reson Med 34: 868–877

    Article  PubMed  CAS  Google Scholar 

  16. Barker GJ, Schreiber W, Gass A, et al. (1997) Standardising magnetisation transfer ratio measurements between MR scanners from different manufacturers. In: Proceedings of the International Society of Magnetic Resonance Medicine 3:1556 (abstract) 1556

    Google Scholar 

  17. Losseff NA, Wang L, Lai M, et al. (1996) Progressive cerebral brain atrophy in multiple sclerosis: A serial MRI study. Brain 119: 2009–2019

    Article  PubMed  Google Scholar 

  18. Filippi M, Colombo B, Rovaris M, et al. (1997) A longitudinal magnetic resonance imaging study of the cervical cord in multiple sclerosis. J Neuroimaging 7: 78–80

    PubMed  CAS  Google Scholar 

  19. Horsfield MA, Larsson HBW, Jones DK, Gass A (1998) Diffusion magnetic resonance imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry S64: 80–84

    Google Scholar 

  20. Miller DH, Barkhof F, Berry I, et al. (1991) Magnetic resonance imaging in monitoring the treatment of multiple sclerosis: Concerted action guidelines. J Neurol Neurosurg Psychiatry 54: 683–688

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Bedell BJ, Narayana PA, Wolinsky JS (1997) A dual approach for minimising false lesion classifications on magnetic resonance images. Magn Reson Med 37: 94–102

    Article  PubMed  CAS  Google Scholar 

  22. van Walderveen MAA, Kamphorst W, Scheltens P, et al. (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50: 1282–1288

    Article  PubMed  Google Scholar 

  23. Dousset V, Grossman RI, Ramer NK, et al. (1992) Experimental allergic encephalomyelitis and multiple sclerosis: Lesion characterization with magnetization transfer imaging. Radiology 182:483–491

    Article  PubMed  CAS  Google Scholar 

  24. Stone LA, Frank JA, Albert PS, et al. (1997) Characterization of MRI response to treatment with interferon beta-1b: Contrast enhancing MRI lesion frequency as a primary outcome measure. Neurology 49: 863–869

    Article  Google Scholar 

  25. Stone LA, Albert PS, Smith ME, et al. (1995) Changes in the amount of diseased white matter over time in patients with relapsing-remitting multiple sclerosis. Neurology 45: 1808–1814

    Article  PubMed  CAS  Google Scholar 

  26. Mitchell JR, Karlik SJ, Lee DH, Fenster A (1994) Computer-assisted identification and quantification of multiple-sclerosis lesions in MR imaging volumes in the brain. J Magn Reson Imaging 4: 197–208

    Article  PubMed  CAS  Google Scholar 

  27. Wolinsky JS, Narayana PA (1998) Phase 3 North American trial of roquinimex (linomide) in relapsing-remitting (RR) and secondary progressive (SP) multiple sclerosis (MS): MRI findings. Neurology 50: 4004 (abstract)

    Google Scholar 

  28. Filippi M, Yousry T, Baratti C, et al. (1996) Quantitative assessment of MRI lesion load in multiple sclerosis. A comparison of conventional spin-echo with fast fluid-attenuated inversion recovery. Brain 119: 1349–1355

    Article  PubMed  Google Scholar 

  29. Udupa JK, Wei L, Samarasekera S, et al. (1996) Multiple sclerosis lesion qualification using fuzzy-connectedness principle. IEEE Trans Med Imaging 16: 598–609

    Article  Google Scholar 

  30. Hajnal JV, Saeed N, Soar EJ, et al. (1995) A registration and interpolation procedure for subvoxel matching of serially acquired MR images. J Comput Assist Tomogr 19: 289–296

    Article  PubMed  CAS  Google Scholar 

  31. Filippi M, Gawne-Cain ML, Gasperini C, et al. (1997) The effect of training and different measurement strategies on the reproducibility of brain MRI lesion load measurements in multiple sclerosis. Neurology 50: 238–244

    Article  Google Scholar 

  32. Bidgood WD, Horii SC (1992) Introduction to the ACR-NEMA DICOM standard. Radiographics 12: 345–355

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia

About this paper

Cite this paper

Horsfield, M.A. (1999). Standardisation, Optimisation and Organisation of Magnetic Resonance Imaging for Monitoring Clinical Trials. In: Filippi, M., Grossman, R.I., Comi, G. (eds) Magnetic Resonance Techniques in Clinical Trials in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2153-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2153-2_10

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2180-8

  • Online ISBN: 978-88-470-2153-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics