Skip to main content

The Physiological Basis of Coronary Circulation

  • Chapter
Contrast Echocardiography in Clinical Practice

Abstract

The high prevalence of cardiovascular diseases in developed countries, particularly coronary heart disease, has resulted in an increasing interest in the physiological basis of the circulatory system and coronary flow [1–4]. The study of the physiology helps us understand cardiovascular pathologic disorders and their clinical manifestations better. But it also allows us to learn about some aspects of the diagnostic tools applied in cardiovascular disease, since most of them aim to disclose abnormalities in coronary flow. These techniques use some type of tracer, a substance that travels through the coronary circulation and interacts with the cells of the vascular wall and the myocytes, reflecting the state, normal or abnormal, of the blood flow. This is the case of isotopic diagnostic techniques (SPECT, PET), the most recent technologies of cardiac magnetic resonance imaging or myocardial contrast-enhanced echocardiography—the topic of this book [5–7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Epstein SE, Cannon RO III, Talbot TL. Hemodynamic principles in the control of coronary blood flow. Am J Cardiol 1985 8;56:4E-10E.

    Google Scholar 

  2. Marcus ML, Chilian WM, Kanatsuka H, Dellsperger KC, Eastham CL, Lamping KG. Understanding the coronary circulation through studies at the microvascular level. Circulation 1990;82:1–7

    Article  PubMed  CAS  Google Scholar 

  3. Hoffman JI. Determinants and prediction of transmural myocardial perfusion. Circulation 1978;58:381–91

    Article  PubMed  CAS  Google Scholar 

  4. Chilian WM. Coronary microcirculation in health and disease. Circulation 1997;95:522–8

    Article  PubMed  CAS  Google Scholar 

  5. Schwaiger M, Muzik O. Assessment of myocardial perfusion by positron emission tomography. Am J Cardiol1991;67:35D–43D

    Article  PubMed  CAS  Google Scholar 

  6. Passariello R, De Santis M. Magnetic resonance imaging evaluation of myocardial perfusion. Am J Cardiol 1998;81:68G–73G

    Article  PubMed  CAS  Google Scholar 

  7. Kaul S. Myocardial contrast echocardiography: 15 years of research and development. Circulation 1997;96:3745–60

    Article  PubMed  CAS  Google Scholar 

  8. Waller BF, Schlant R. Anatomy of the heart. In: W Alexander, RC Schlant and V Fuster (eds.): Hurst’s the heart, arteries and veins. 9th ed. McGraw-Hill, 1998:19–79

    Google Scholar 

  9. Waller BF. Anatomy, histology, and pathology of the major epicardial coronary arteries relevant to echocardiographic imaging techniques. J Am Soc Echocardiogr 1989;2:232–52

    PubMed  CAS  Google Scholar 

  10. Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel J, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part I. Clin Cardiol 1992;15:451–7

    Article  PubMed  CAS  Google Scholar 

  11. Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel J, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part II. Clin Cardiol 1992;15:535–40

    Article  PubMed  CAS  Google Scholar 

  12. Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel JV, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part III. Clin Cardiol 1992;15:607–15

    Article  PubMed  CAS  Google Scholar 

  13. Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel J, Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques-Part IV. Clin Cardiol 1992;15:675–87

    Article  PubMed  CAS  Google Scholar 

  14. Schlant R, Sonnenblick EH, Katz AM. Normal physiology of the cardiovascular system. In: W Alexander, RC Schlant and V Fuster (eds.): Hurst’s the heart, arteries and veins. 9th ed. McGraw-Hill, 1998:81–124

    Google Scholar 

  15. Young DF. Fluid mechanics of arterial stenosis. J Biomech Eng 1979;101:157

    Article  Google Scholar 

  16. Gould KL. Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res 1978;43:242–53

    Article  PubMed  CAS  Google Scholar 

  17. Gould KL. Dynamic coronary stenosis. Am J Cardiol 1980;45:286–92

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz JS, Carlyle PF, Cohn JN. Effect of coronary arterial pressure on coronary stenosis resistance. Circulation 1980;61:70–6

    Article  PubMed  CAS  Google Scholar 

  19. Mates RE, Gupta RL, Bell AC, Klocke FJ. Fluid dynamics of coronary artery stenosis. Circ Res 1978;42:152–62

    Article  PubMed  CAS  Google Scholar 

  20. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 1986;251:H779–88

    PubMed  CAS  Google Scholar 

  21. Lamping KG, Kanatsuka H, Eastham CL, Chilian WM, Marcus ML. Nonuniform vasomotor responses of the coronary microcirculation to serotonin and vasopressin. Circ Res 1989;65:343–51

    Article  PubMed  CAS  Google Scholar 

  22. Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Res 1978;43:92–101

    Article  PubMed  CAS  Google Scholar 

  23. Hoffman JI. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 1984;70:153–9

    Article  PubMed  CAS  Google Scholar 

  24. Vatner SF. Regulation of coronary resistance vessels and large coronary arteries. Am J Cardiol 1985;56:16E–22E

    Article  PubMed  CAS  Google Scholar 

  25. Harrison DG, Marcus ML, Dellsperger KC, Lamping KG, Tomanek RJ. Pathophysiology of myocardial perfusion in hypertension. Circulation 1991;83(Suppl):III14–8

    Google Scholar 

  26. Wells R. Microcirculation and coronary blood flow. Am J Cardiol. 1972 Jun;29(6):847–50

    Article  Google Scholar 

  27. Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046–51

    Article  PubMed  CAS  Google Scholar 

  28. Egashira K, Inou T, Hirooka Y et al. Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J Clin Invest 1993;91:29–37

    Article  PubMed  CAS  Google Scholar 

  29. Cox DA, Vita JA, Treasure CB et al. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 1989;80:458–65

    Article  PubMed  CAS  Google Scholar 

  30. Nabel EG, Selwyn AP, Ganz P. Large coronary arteries in humans are responsive to changing blood flow: an endothelium-dependent mechanism that fails in patients with atherosclerosis. J Am Coll Cardiol 1990;16:349–56

    Article  PubMed  CAS  Google Scholar 

  31. Chilian WM, Dellsperger KC, Layne SM et al. Effects of atherosclerosis on the coronary microcirculation. Am J Physiol 1990;258:H529–39

    PubMed  CAS  Google Scholar 

  32. Zeiher AM, Drexler H, Wollschlager H, Just H.Endothelial dysfunction of the coronary microvas-culature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991;84:1984–92.

    Article  PubMed  CAS  Google Scholar 

  33. Zeiher AM, Drexler H, Saurbier B, Just H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 1993;92:652–62

    Article  PubMed  CAS  Google Scholar 

  34. Hoffman JI, Buckberg GD. The myocardial supply:demand ratio. Am J Cardiol. 1978;41:327–32

    Article  PubMed  CAS  Google Scholar 

  35. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–6

    Article  PubMed  CAS  Google Scholar 

  36. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–6

    Article  PubMed  CAS  Google Scholar 

  37. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9265–9

    Article  PubMed  CAS  Google Scholar 

  38. Yanagisawa M, Kurihara H, Kimura S et al.A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411–5

    Article  PubMed  CAS  Google Scholar 

  39. Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res 1980;47:807–13

    Article  PubMed  CAS  Google Scholar 

  40. VanDijk AM, Wieringa PA, van der Meer M, Laird JD. Mechanics of resting isolated single vascular smooth muscle cells from bovine coronary artery. Am J Physiol 1984;246:C277–87

    Google Scholar 

  41. Kuo L, Davis MJ, Chilian WM. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol 1990 Oct;259:H1063–70

    PubMed  CAS  Google Scholar 

  42. Chilian WM, Layne SM, Eastham CL, Marcus ML. Heterogeneous microvascular coronary alpha-adrenergic vasoconstriction. Circ Res 1989;64:376–88

    Article  PubMed  CAS  Google Scholar 

  43. Myers PR, Banitt PF, Guerra R Jr, Harrison DG. Characteristics of canine coronary resistance arteries: importance of endothelium. Am J Physiol 1989;257:H603–10

    PubMed  CAS  Google Scholar 

  44. Feigl EO. Coronary physiology. Physiol Rev 1983;63:1–2095

    PubMed  CAS  Google Scholar 

  45. Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 1971;27:416–32

    Article  PubMed  CAS  Google Scholar 

  46. Sonnenblick EH, Ross J Jr, Covell JW, Kaiser GA, Braunwald E. Velocity of contraction as a determinant of myocardial oxygen consumption. Am J Physiol 1965;209:919–27

    PubMed  CAS  Google Scholar 

  47. Boerth RC, Covell JW, Pool PE, Ross J. Increased myocardial oxygen consumption and contractile state associated with increased heart rate in dogs. Circ Res 1969;24:725–34

    Article  PubMed  CAS  Google Scholar 

  48. Takaoka H, Takeuchi M, Odake M et al. Comparison of hemodynamic determinants for myocardial oxygen consumption under different contractile states in human ventricle. Circulation 1993;87:59–69

    Article  PubMed  CAS  Google Scholar 

  49. Kameyama T, Asanoi H, Ishizaka S et al. Energy conversion efficiency in human left ventricle. Circulation 1992;85:968–988

    Article  Google Scholar 

  50. Yada T, Richmond KN, Van Bibber R, Kroll K, Feigl EO. Role of adenosine in local metabolic coronary vasodilation. Am J Physiol 1999;276:H1425–33

    PubMed  CAS  Google Scholar 

  51. Hess DS, Bache RJ. Transmural distribution of myocardial blood flow during systole in the awake dog. Circ Res 1976;38:5–15

    Article  PubMed  CAS  Google Scholar 

  52. Bache RJ, Cobb FR. Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res 1977;41:648–53

    Article  PubMed  CAS  Google Scholar 

  53. Bell JR, Fox AC. Pathogenesis of subendocardial ischemia. Am J Med Sci 1974;268:3–13

    Article  PubMed  CAS  Google Scholar 

  54. Jones CJ, Kuo L, Davis MJ, Chilian WM. Myogenic and flow-dependent control mechanisms in the coronary microcirculation. Basic Res Cardiol 1993; 88:2–10

    PubMed  CAS  Google Scholar 

  55. Rajagopalan S, Dube S, Canty JM. Regulation of coronary diameter by myogenic mechanisms in arterial microvessels greater than 100 microns in diameter. Am J Physiol 1995;268:H788–H793

    PubMed  CAS  Google Scholar 

  56. Little WC, Cheng CP, Mumma M, Igarashi Y, Vinten-Johansen J, Johnston WE. Comparison of measures of left ventricular contractile performance derived from pressure-volume loops in conscious dogs. Circulation 1989;80:1378–87

    Article  PubMed  CAS  Google Scholar 

  57. Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 1987;76:1422–3

    Article  PubMed  CAS  Google Scholar 

  58. Grandin C, Wijns W, Melin JA, Bol A, Robert AR, Heyndrickx GR et al. Delineation of myocardial viability with PET. J Nucl Med 1995;36(9):1543–52

    Google Scholar 

  59. Yamamoto Y, de Silva R, Rhodes CG, Araujo LI, Iida H, Rechavia E et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation 1992;86:167–78

    Article  PubMed  CAS  Google Scholar 

  60. Marinho NV, Keogh BE, Costa DC, Lammerstma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996;93(4):737–44

    Article  Google Scholar 

  61. Ghaleh B, Shen YT, Vatner SF. Spatial heterogeneity of myocardial blood flow presages salvage versus necrosis with coronary artery reperfusion in conscious baboons. Circulation 1996;94:2210–5

    Article  PubMed  CAS  Google Scholar 

  62. Bassingthwaighte JB, Li Z. Heterogeneities in myocardial flow and metabolism: exacerbation with abnormal excitation. Am J Cardiol 1999;83:7H–12H

    Article  PubMed  CAS  Google Scholar 

  63. Camici PG, Wijns W, Borgers M, De Silva R, Ferrari R, Knuuti J et al. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation 1997;96:3205–14

    Article  PubMed  CAS  Google Scholar 

  64. Gerber BL, Vanoverschelde JL, Bol A, Michel C, Labar D, Wijns W et al. Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation. Circulation 1996;94:651–9

    Article  PubMed  CAS  Google Scholar 

  65. Marin-Neto JA, Dilsizian V, Arrighi JA, Freedman NM, Perrone-Filardi P, Bacharach SL et al. Thallium reinjection demonstrates viable myocardium in regions with reverse redistribution. Circulation 1993;88:1736–45

    Article  PubMed  CAS  Google Scholar 

  66. Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980;47:201–7

    Article  PubMed  CAS  Google Scholar 

  67. Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross J. Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 1984;247:H727–38

    PubMed  CAS  Google Scholar 

  68. Bonow RO. Contractile reserve and coronary blood flow reserve in collateral-dependent myocardium. J Am Coll Cardiol 1999;33:705–7

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marcos-Alberca, P., Pérez, M.R., Rábago, R., Zamorano, J.L., Fernández, M.A.G. (2004). The Physiological Basis of Coronary Circulation. In: Contrast Echocardiography in Clinical Practice. Springer, Milano. https://doi.org/10.1007/978-88-470-2125-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2125-9_1

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2174-7

  • Online ISBN: 978-88-470-2125-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics