Skip to main content
  • 224 Accesses

Abstract

Not only has the optimal solution for resuscitation after traumatic injury been hotly contested, so too has the concept of resuscitation at all prior to definitive hemorrhage control [1]. The ideal resuscitation strategy following penetrating or blunt trauma associated with hypoperfusion to provide maximal survival remains to be defined. Currently, there is a trend towards limited volume resuscitation instead of aggressive crystalloid volume expansion. Vitally related to these controversies are the debated endpoints of resuscitation — physiological and metabolic markers of the adequacy of resuscitation [2]. Ideally, these markers should reflect changes in both systemic and microcirculatory flow. Increasingly evidence suggests that this is not the case. Moreover, the immunomodulatory effects of resuscitation and resuscitation fluids have influenced the casual selection of fluid type and amount for plasma volume expansion. This paper will explore the current state of trauma resuscitation ,with a particular focus on the acid-base sequelae of resuscitation, the impact of these sequelae, and their interpretation on the endpoints of resuscitation, potentially useful strategies to aid in resuscitation, and future areas of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dries DJ (1996) Hypotensive resuscitation. Shock 6:317–318

    Article  Google Scholar 

  2. Durham RM, Neunaber K, Mazuski JE, et al (1996) The use of oxygen consumption and delivery as endpoints for resuscitation in critically ill patients. J Trauma 41:32–39

    Article  PubMed  CAS  Google Scholar 

  3. Mager S, De Varenes (1998) Clinical death and the measurement of stressed vascular volume. Crit Care Med 26:1061–1064

    Article  Google Scholar 

  4. Bickell W, Wall MJ, Pepe PE, et al (1994) Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 331:1105–1109

    Article  PubMed  CAS  Google Scholar 

  5. Solomonov E, Hirsh M, Yahiya A, et al (2000) The effect of vigorous fluid resuscitation in uncontrolled hemorrhagic shock after massive splenic injury. Crit Care Med 28:749–754

    Article  PubMed  CAS  Google Scholar 

  6. Abramson D, Scalea TM, Hitchcock R, et al (1993) Lactate clearance and survival following injury. J Trauma 35:584–589

    Article  PubMed  CAS  Google Scholar 

  7. Blow O, Magliore L, Claridge JA, et al (1999) The golden hour and the silver day: detection and correction of occult hypoperfusion within 24 hours improves outcomes from major trauma. J Trauma 47:964–969

    Article  PubMed  CAS  Google Scholar 

  8. Claridge JA, Crabtree TD, Pelletier SJ, et al (2000) Persistent occult hypoperfusion is associated with a significant increase in infection rate and mortality in major trauma patients. J Trauma 48:8–14

    Article  PubMed  CAS  Google Scholar 

  9. James JH, Luchette FA, McCarter FD, et al (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508

    Article  PubMed  CAS  Google Scholar 

  10. Gomersall CD, Joynt GM, Freebairn RC et al (2000) Resuscitation of critically ill patients based on the results of gastric tonometry: a prospective, randomized, controlled trial. Crit Care Med 28:607–614

    Article  PubMed  CAS  Google Scholar 

  11. Kellum JA, Rico P, Garuba AK, et al (2000) Accuracy of mucosal pH and mucosal-arterial carbon dioxide tension for detecting mesenteric hypoperfusion in acute canine endotoxemia. Crit Care Med 28:462–466

    Article  PubMed  CAS  Google Scholar 

  12. Millham FH, Malone M, Blansfield J, et al (1995) Predictive accuracy of the TRISS survival statistic is improved by a modification that includes admission pH. Arch Surg 130:307–311

    Article  Google Scholar 

  13. Rutherford EJ, Morris JA, Reed GW, et al (1992) Base deficit stratifies mortality and determines therapy. J Trauma 33:417–422

    Article  PubMed  CAS  Google Scholar 

  14. Chang MC, Meredith JW (1997) Cardiac preload, splanchnic perfusion, and their relationship during resuscitation in trauma patients. J Trauma 42:577–584

    Article  PubMed  CAS  Google Scholar 

  15. Henry S, Scalea TM (1999) Resuscitation in the new millennium. Surg Clin North Am 79:1259–1267

    Article  PubMed  CAS  Google Scholar 

  16. Cosgriff N, Moore EE, Sauaia A, et al (1997) Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidosis revisited. J Trauma 42:857–862

    Article  PubMed  CAS  Google Scholar 

  17. McKinley BA, Marvin RG, Cocanour CS, et al (2000) Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectroscopy. J Trauma 48:637–642

    Article  PubMed  CAS  Google Scholar 

  18. Weil MH, Nakagawa Y, Tang W, et al (1999) Sublingual capnometry: a new noninvasive measurement tool for diagnosis and quantification of severity of circulatory shock. Crit Care Med 27:1225–1229

    Article  PubMed  CAS  Google Scholar 

  19. Holm C, Melcer B, Harbrand F, et al (2000) Intrathoracic blood volume as an endpoint in resuscitation of the severely burned: an observational study of 24 patients. J Trauma 48:728–734

    Article  PubMed  CAS  Google Scholar 

  20. Kellum JA (1998) Metabolic acidosis in the critically ill: lessons learned from physical chemistry. Kidney Int 53[Suppl 66]:S81-S86

    Google Scholar 

  21. Healey MA, Davis RE, Liu FC, et al (1998) Lactated ringer’s is superior to normal saline in a model of massive hemorrhage and resuscitation. J Trauma 45:894–899.

    Article  PubMed  CAS  Google Scholar 

  22. Scheingraber S, Rehm M, Semisch C, et al(1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthiology 90:1265–1270

    Article  CAS  Google Scholar 

  23. PICU CM article

    Google Scholar 

  24. Patterson T, Bailey H, Kaplan LJ (2000) Hyperchloremia induces acidosis, increases the strong ion gap, and impairs coagulation. Crit Care Med 28:A118

    Google Scholar 

  25. Wilcox CS (1983) Regulation of renal blood flow by plasma chloride. J Clin Invest 71:726–735

    Article  PubMed  CAS  Google Scholar 

  26. Williams EL, Hildebrand KL, McCormick SA, et al (1999) The effect of intravenous lactated ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg 88:999–1003

    PubMed  CAS  Google Scholar 

  27. Wilkes N, Woolf R, Stephens R, et al (2001) The effects of balanced versus saline based intravenous solutions on acid-base status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg (in press)

    Google Scholar 

  28. Prough DS, Bidani A (1999) Hyperchloremic metabolic acidosis is a predictable consequence of intraoperative infusion of 0.9% saline. Anesthiology 90:1247–1249

    Article  CAS  Google Scholar 

  29. Waters JH, Miller LR, Clack S, et al (1999) Cause of metabolic acidosis in prolonged surgery. Crit Care Med 27:2142–2146

    Article  PubMed  CAS  Google Scholar 

  30. Kaplan LJ, Bailey H, Kozar R, et al (1999) Initial pH, base deficit, lactate, strong ion difference and gap, but not anion gap predict outcome from major vascular injury. Crit Care Med 27:A174

    Google Scholar 

  31. Kaplan LJ, Bailey H, Klein A, et al (1999) Strong ion gap: a predictor of early mortality following blunt or penetrating trauma. Crit Care Med 27:A42

    Google Scholar 

  32. Schierhout G, Roberts I (1998) Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomized trials. BMJ 316:961–964

    Article  PubMed  CAS  Google Scholar 

  33. Alderson P, Hawkins V (2000) Colloid solutions for fluid resuscitation. Cochrane Database of Systematic Reviews (computer file). 2:CD001319

    Google Scholar 

  34. Wilkes MM, Navickis RJ (2001) No evidence of excess mortality in patients receiving human albumin: a meta-analysis of randomized controlled trials. Crit Care 5[Suppl 1]:S54

    Google Scholar 

  35. Burch JM (1997) New concepts in trauma. Am J Surg 173:44–46

    Article  PubMed  CAS  Google Scholar 

  36. Garrison JR, Richardson JD, Hilakos AS, et al (1996) Predicting the need to pack early for severe intra-abdominal hemorrhage. J Trauma 40:923–929

    Article  PubMed  CAS  Google Scholar 

  37. Hirshberg A, Sheffer N, Barnea O (1999) Computer simulation of hypothermia during “damage control” laparotomy. World J Surg 23:960–965

    Article  PubMed  CAS  Google Scholar 

  38. Moore EE (1996) Staged laparotomy for the hypothermia, acidosis, and coagulopathy syndrome. Am J Surg 172:405–410

    Article  PubMed  CAS  Google Scholar 

  39. Kinsky MP, Milner SM, Button B, et al (2000) Resuscitation of severe thermal injury with hypertonic saline dextran: effects on peripheral and visceral edema in sheep. J Trauma 49:844–853

    Article  PubMed  CAS  Google Scholar 

  40. Cinat ME, Wallace WC, Nastanski F, et al (1999) Improved survival following massive transfusion in patients who have undergone trauma. Arch Surg 134:964–970.

    Article  PubMed  CAS  Google Scholar 

  41. Neff T, Jungheinrich C, Doelberg M, et al (2001) Advantages of 6% hydroxyethyl starch 130/0.4 (Voluven) at repetitive high dose levels in patients with severe cranio-cerebral trauma. Crit Care 5[Suppl 1]:S53

    Google Scholar 

  42. Grauer MT, Baus D, Woessner, et al (2001) Effects on general safety and coagulation after long-term, high-dose volume therapy with 6% hydroxyethyl starch 130/0.4 in patients with acute ischemic stroke. Results of a randomized, placebo controlled, double-blind study. Crit Care 5[Suppl l]:S53–54.

    Google Scholar 

  43. Via D, Kauffman C, Anderson D, et al (2001) Effect of hydroxyethyl starch on coagulopathy in a swine model of hemorrhagic shock and resuscitation. J Trauma 50:1076–1082

    Article  PubMed  CAS  Google Scholar 

  44. Kellum JA, Kramer DJ, Lee K, et al (1997) Release of lactate by the lung in acute lung injury. Chest 111:1301–1305

    Article  PubMed  CAS  Google Scholar 

  45. Eberhard LW, Morabito DJ, Mathay MA, et al (2000) Initial severity of metabolic acidosis predicts the development of acute lung injury in severely traumatized patients. Crit Care Med 28:125–131

    Article  PubMed  CAS  Google Scholar 

  46. Rhee P, Wang D, Ruff P, et al (2000) Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med 28:74–78

    Article  PubMed  CAS  Google Scholar 

  47. Junger WG, Hoyt DB, Hamreus M, et al (1997) Hypertonic saline activates protein kinases and mitogen-activated protein kinase p38 in T-cells. J Trauma 42:437–443

    Article  PubMed  CAS  Google Scholar 

  48. Sillett HK, Whicher JT, Trejdosiewicz LK (1998) Effects of resuscitation fluids on T cell immune responses. Br J Anaesth 81:242–243

    Article  PubMed  CAS  Google Scholar 

  49. Safar P, Tisherman SA, Behringer W, et al (2000) Suspended animation for delayed resuscitation from prolonged cardiac arrest that is unresuscitable by standard cardiopulmonary-cerebral resuscitation. Crit Care Med 28[11 Suppl]:N214–218

    Article  Google Scholar 

  50. Behringer W, Prueckner S, Kentner R, et al (2000) Rapid hypothermic aortic flush can achieve survival without brain damage after 30 minutes cardiac arrest in dogs. Anesthiology 93:1491–1499

    Article  CAS  Google Scholar 

  51. McNeil JD, Smith DL, Jenkins DH, et al (2001) Hypotensive resuscitation using a polymerized bovine hemoglobin-based oxygen-carrying solution (HBOC-21) leads to a reversal of anaerobic metabolism. J Trauma 50:1063–1075

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia

About this paper

Cite this paper

Kaplan, L.J. (2002). Trauma Resuscitation. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2099-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2099-3_9

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0176-3

  • Online ISBN: 978-88-470-2099-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics