Skip to main content

How Permissive Should Hypercapnia Be?

  • Conference paper
  • 217 Accesses

Abstract

The alteration of gas exchange is one of the main characteristics of acute respiratory distress syndrome (ARDS), and the first approaches aim to normalize blood gas values. Large tidal volumes and high peak inspiratory pressure were used, restricted only for the risk of pneumothorax and hemodynamic impairment. An evolving body of experimental studies, conducted over the last decades, have demonstrated ventilator-induced lung injury (VILI). They also demonstrated that mechanical ventilation with high peak inspiratory pressure induces a “dose”-dependent exudative pulmonary edema, correlated more to high tidal volume excursion than to high inspiratory pressure [1, 2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webb HH, Tierny DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressure: protection by positive end-expiratory pressure. Am Rev Respir Dis 110: 556–565

    PubMed  CAS  Google Scholar 

  2. Dreyfuss DG, Soler P, Basset G, et al (1988) High inflation pressure pulmonary edema: respective effects of airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164

    PubMed  CAS  Google Scholar 

  3. Servillo G, Svantesson C, Beydon L, et al (1997) Pressure-volume curves in acute respiratory failure: automated low flow inflation versus occlusion. Am J Respir Crit Care Med 155: 1629–1636

    PubMed  CAS  Google Scholar 

  4. Servillo G, De Robertis E, Coppola, et al (2000) Application of a computerised method to measure static pressure volume curve in acute respiratory distress syndrome. Intensive Care Med 26: 11–14

    Article  PubMed  CAS  Google Scholar 

  5. Pesenti A (1990) Target blood gases during ARDS ventilatory menagement. Intensive Care Med 16: 349–351

    Article  PubMed  CAS  Google Scholar 

  6. Gothgen IH, Berthelsen PG, Rasmussen JP, et al (1993) Ventilation in ARDS and asthma: the optimal blood gas values. Scand J Clin Lab Invest 53[Suppl 214]: 67–73

    Article  Google Scholar 

  7. Nunn JF (1987) The effects of changes in carbon dioxide tension. In: Applied respiratory physiology, 3rd edn Butterworth, London, pp 460–470

    Google Scholar 

  8. Brofman JD, Leff AR, Munoz NM, et al (1990) Sympathetic secretory response to hypercapnic acidosis in swine. J Appl Physiol 69: 710–717

    PubMed  CAS  Google Scholar 

  9. Thomas RC (1984) Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J Physiol (Lond) 354: 3–22

    Google Scholar 

  10. Tang WC, Weil MH, Gazmuri RJ, et al (1991) Reversible impairment of myocardial contractility due to hypercarbic acidosis in the isolated perfused rat heart. Crit Care Med 19: 218–24

    Article  PubMed  CAS  Google Scholar 

  11. Orchard C, Kentish J (1990) Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol 258: 967–981

    Google Scholar 

  12. Case RB, Greenberg H, Moskowitz R (1975) Alterations in coronary sinus PO2 and O2 saturation resulting from PCO2 changes. Cardiovasc Res 9: 167–177

    Article  PubMed  CAS  Google Scholar 

  13. Wexels JC, Myhre ES (1987) Hypocapnia and hypercapnia in the dog: effects on myocardial blood-flow and haemodynamics during beta-and combined alpha-and beta-adrenoceptor blockade. Clin Physiol 7: 21–33

    Article  PubMed  CAS  Google Scholar 

  14. Blackburn JP, Conway CM, Leigh JM, et al (1972) PaCO2 and the pre-ejection period: the PaCO2 /inotropy response curve. Anesthesiology 37: 268–276

    Article  PubMed  CAS  Google Scholar 

  15. Prys-Roberts C, Kelman GR, Greenbaum R, et al (1967) Circulatory influences of artificial ventilation during nitrous oxide anaesthesia in man. II. Results: the relative influence of mean intrathoracic pressure and arterial carbon dioxide tension. Br J Anaesth 39: 533–548

    Article  PubMed  CAS  Google Scholar 

  16. Viitanen A, Salmenperä M, Heinonen J (1990) Right ventricular response to hypercarbia after cardiac surgery. Anesthesiology 73: 393–400

    Article  PubMed  CAS  Google Scholar 

  17. McLellan TM (1991) The influence of a respiratory acidosis on the exercise blood lactate response. Eur J Appl Physiol 63: 6–11

    Article  CAS  Google Scholar 

  18. Siesjö BK (1980) Cerebral metabolic rate in hypercarbia — a controversy. Anesthesiology 52: 461–465

    Article  PubMed  Google Scholar 

  19. Berntman L, Dahlgren N, Siesjö BK (1979) Cerebral blood flow and oxygen consumption in the rat brain during extreme hypercarbia. Anesthesiology 50: 299–305

    Article  PubMed  CAS  Google Scholar 

  20. Prough DS, Rogers AT, Stump DA, et al (1990) Hypercarbia depresses cerebral oxygen consumption during cardiopulmonary bypass. Stroke 21: 1162–1166

    Article  PubMed  CAS  Google Scholar 

  21. Edvinsson L, McKenzie ET, McCulloch J (1993) Changes in arterial gas tensions. In: Cerebral blood flow and metabolism. Raven Press, New York, pp 524–552

    Google Scholar 

  22. Miller JD (1987) Cerebral blood flow variations with perfusion pressure and metabolism. In: Wood JH (ed) Cerebral blood flow. Physiologic and clinical aspects. McGraw-Hill, New York, pp 119–130

    Google Scholar 

  23. Lanier WL Weglinski MR 1991 Intracranial pressure. In Cucchiara RF Michenfelder JD ed Clinical neuroanesthesia. Churchill Livingstone New York pp 77–11.

    Google Scholar 

  24. Miller JD Sullivan HG 1979 Severe intracranial hypertension. In Trubuhovich RV ed Management of acute intracranial disaster. Little Brown Boston pp 19–35.

    Google Scholar 

  25. Eisele JH, Eger EI, Muallem M (1967) Narcotic properties of carbon dioxide in the dog. Anesthesiology 28: 856–865

    Article  PubMed  CAS  Google Scholar 

  26. Juan G, Calverley P, Talamo C, et al (1984) Effect of carbon dioxide on diaphragmatic function in human beings. N Engl J Med 310: 874–879

    Article  PubMed  CAS  Google Scholar 

  27. Gomes Vianna L, Koulouris N, Lanigan C, et al (1990) Effect of acute hypercapnia on limb muscle contractility in humans. J Appl Physiol 69: 1486–1493

    Google Scholar 

  28. Chen HG, Wood CE (1993) The adrenocorticotropic hormone and arginine vaspressin responses to hypercapnia in fetal and maternal sheep. Am J Physiol 264: 324–330

    Google Scholar 

  29. Raff H, Roarty TP (1988) Renin, ACTH and aldosterone during acute hypercapnia and hypoxia in conscious rats. Am J Physiol 254: 431–435

    Google Scholar 

  30. Butler J, Caro CG, Alcala R, et al (1960) Physiological factors affecting airway resistance in normal subjects and in patients with obstructive respiratory disease. J Clin Invest 39: 584–591

    Article  PubMed  CAS  Google Scholar 

  31. Charney AN, Feldman GM (1984) Systemic acid-base disorders and intestinal electrolyte transport. Am J Physiol 247: 1–12

    Google Scholar 

  32. Gelman S, Ernst EA (1977) Role of pH, PCO2, and O2 content of portal blood in hepatic circulatory autoregulation. Am J Physiol 233: 255–262

    Google Scholar 

  33. Bersentes TJ, Simmons DH (1967) Effects of acute acidosis on renal hemodynamics. Am J Physiol 212: 633–640

    PubMed  CAS  Google Scholar 

  34. Shibata K, Cregg N, Engelberts D, et al (1998). Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. Am J Respir Crit Care Med 158: 1578–1584

    PubMed  CAS  Google Scholar 

  35. Laffey JG, Engelberts D, Kavanagh BP (2000) Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med 161: 141–146

    PubMed  CAS  Google Scholar 

  36. Laffey JG, Kavanagh BP (1999) Carbon dioxide and critically ill — too little of a good thing? Lancet 354: 1283–1286

    Article  PubMed  CAS  Google Scholar 

  37. Vannucci RC, Towfighi J, Heitjan D, et al (1995). Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: an experimental study in the immature rat. Pediatrics 95: 868–874

    PubMed  CAS  Google Scholar 

  38. Allen DB, Maguire JJ, Mahdavian M, et al (1997) Would hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg 132: 991–996

    Article  PubMed  CAS  Google Scholar 

  39. Xu L, Glassford AJ, Giaccia AJ, et al (1998) Acidosis reduces neuronal apoptosis. Neuroreport 9: 875–879

    Article  PubMed  CAS  Google Scholar 

  40. Darioli R, Perret C (1984) Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis 129: 385–387

    PubMed  CAS  Google Scholar 

  41. Lee PC, Helsmoortel CM, Cohn SM, et al (1990) Are low tidal volumes safe? Chest 97: 430–434

    Article  PubMed  CAS  Google Scholar 

  42. Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16: 372–377

    Article  PubMed  CAS  Google Scholar 

  43. Amato MBP, Barbas CSV, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354

    Article  PubMed  CAS  Google Scholar 

  44. Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. N Eng J Med 338: 355–361

    Article  CAS  Google Scholar 

  45. Brochard L, Roudot-Thoraval F, Roupie E, et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in the acute respiratory distress syndrome.Am J Respir Crit Care Med 158: 1831–1838

    CAS  Google Scholar 

  46. Brower RG, Shanholtz CB, Fessier BE, et al (1999) Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 27: 1492–1498

    Article  PubMed  CAS  Google Scholar 

  47. Gentilello LM, Anardi D, Mock C, et al (1995) Permissive hypercapnia in trauma patients. J Trauma 39: 846–852

    Article  PubMed  CAS  Google Scholar 

  48. Feihl F, Perret C (1994) How permissive hypercapnia should be? Am Respir Crit Care Med 150: 1722–1737

    CAS  Google Scholar 

  49. Hickling KG, Walsh J, Henderson SJ, et al (1994) Low mortality rate in adult respiratory syndrome using low-volume, pressure-limited ventilation wiyh permissive hypercapnia: a prospective study. Crit Care Med 22: 1568–1578

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia

About this paper

Cite this paper

Servillo, G., D’amato, L., Tufano, R. (2002). How Permissive Should Hypercapnia Be?. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2099-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2099-3_27

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0176-3

  • Online ISBN: 978-88-470-2099-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics