Skip to main content

FI2TD schemes for magnetic field simulations: new formulations and algorithmic improvements

  • Conference paper
Numerical Mathematics and Advanced Applications

Summary

Finite Integration Implicit Time Domain (FI2TD) methods are designed for the calculation of transient magnetic fields and are based on the Finite Integration Technique. To improve the geometric modeling capabilities of these methods while maintaining computationally efficient structured orthogonal grids, the Conformal Finite Integration Technique was introduced. A magnetic field formulation based on a reduced magnetic vector potential formulation also allows an improved geometrical modeling of excitation coils while at the same time reducing the computational work for FI2TD simulation s at typically low accuracy requirements. A new generalized linearization formulation is presented for the simulation of nonlinear ferromagnetic material behavior, which includes the standard linearization schemes as special cases and enables us to derive hybrid nonlinear iteration schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bíro, O., Preis, K. (1990): Finite element analysis of 3D eddy currents. IEEE Trans. Magnetics 26, 418–423

    Article  Google Scholar 

  2. Bíro, O., Preis, K., Richter, K.R. (1995): Various FEM formulations for the calculation of transient 3D eddy currents in nonlinear media. IEEE Trans. Magnetics 31, 1307–1312

    Article  Google Scholar 

  3. Clemens, M., Weiland, T. (1999): Transient eddy current calculation with the FI-method. IEEE Trans. Magnetics 35, 1163–1166

    Article  Google Scholar 

  4. Clemens, M., Weiland, T. (2002): Magnetic field simulation using Conformal FIT formulations. IEEE Trans. Magnetics 38, 389–392

    Article  Google Scholar 

  5. Clemens, M., Hilgner, M., Schuhmann, R., Weiland, T. (2000): Transient eddy current simulation using the nonorthogonal FIT. In: Conference Record of the Ninth Biennial IEEE Conference on Electromagnetic Field Computation. IEEE Magnetics Society, IEEE, Piscataway, NJ, p. 389

    Google Scholar 

  6. Drobny, S., Weiland, T. (2000): Numerical calculation of nonlinear transient field problems with the Newton-Raphson method. IEEE Trans. Magnetics 36, 809–812

    Article  Google Scholar 

  7. Emson, C.R.I. (1990): Summary of results for hollow conducting sphere in uniform transiently varying magnetic field (problem 11). COMPAL 9, 191–203

    Article  Google Scholar 

  8. Krietenstein, B., Thoma, P., Schuhmann, R., Weiland, T. (1998): The perfect boundary approximation technique facing the big challenge of high precision field computation. In: Eyberger, C.E. et al. (eds.):Proceedings of the XIX International LINAC Conference. Argonne National Laboratory, Argonne, IL, pp. 860–862

    Google Scholar 

  9. Monk, P., Süli, E. (1994): A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 31, 393–412

    Article  MathSciNet  MATH  Google Scholar 

  10. Müller, W, Krüger, J., Jacobus, A., Winz, R., Weiland, T., Euler, H., Kamm, U., Novender, W.R. (1982): Numerical solution of 2-and 3-dimensional nonlinear field problems by means of the computer program PROFI. Archiv Elektrotechnik 65, 299–307

    Article  Google Scholar 

  11. Munteanu, I., Drobny, S., Weiland, T., Ioan, D. (2001): Triangle search method for nonlinear electromagnetic field computation. COMPAL, 20, 417–430

    Article  MATH  Google Scholar 

  12. Niikura, S., Kameari, A. (1992): Analysis of eddy current and force in conductors with motion. IEEE Trans. Magnetics 28, 1450–1453

    Article  Google Scholar 

  13. Ruge, J., Stueben, K. (1986): Algebraic multigrid AMG. Arbeitspapiere no. 210. Gesellschaft für Mathematik und Datenverarbeitung, Sankt Augustin

    Google Scholar 

  14. Schwab, A.J. (1998): Begriffswelt der Feldtheorie. 5. Aufl. Springer, Berlin

    Book  MATH  Google Scholar 

  15. Thoma, P., Weiland, T. (1996): A consistent subgridding scheme for the finite difference time_domain method. Internat. J. Numer. Modelling 9, 359–374

    Article  Google Scholar 

  16. Weiland, T. (1977): A discretization method for the solution of Maxwell’s equations for six-component fields. Arch. Elektronik Übertragungstech. 31, 116–120

    Google Scholar 

  17. Weiland, T. (1979): Lossy waveguides with arbitrary boundary contour and distribution of material. Arch. Elektronik Übertragungstcch. 33, 170–174

    Google Scholar 

  18. Weiland, T. (1996): Time domain electromagnetic field computation with finite difference methods. Internat. J. Numer. Modelling 9, 295–319

    Article  Google Scholar 

  19. Yu, W., Miura, R. (2001): A conformal finite difference time domain technique for modeling curved dielectric surfaces. IEEE Microwave Wireless Components Lett. 11, 25–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this paper

Cite this paper

Clemens, M., Weiland, T. (2003). FI2TD schemes for magnetic field simulations: new formulations and algorithmic improvements. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds) Numerical Mathematics and Advanced Applications. Springer, Milano. https://doi.org/10.1007/978-88-470-2089-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2089-4_23

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2167-9

  • Online ISBN: 978-88-470-2089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics