Skip to main content

Pharmacology: Mechanism of Action of Bisphosphonates

  • Chapter
  • First Online:
  • 1586 Accesses

Abstract

Bisphosphonates (BPs) are the most widely used and effective anti-resorptive agents for the treatment of diseases in which there is an increase in osteoclastic resorption, including post-menopausal osteoporosis, Paget’s disease, and tumor-associated osteolysis. BPs are chemical analogs of inorganic pyrophosphate (PPi) and, although they share many pharmacological features with PPi, there are important biochemical differences, particularly in the way in which they bind to bone mineral and their effect on bone resorption. BPs are preferentially incorporated into sites of active bone remodeling, as commonly occurs in conditions characterized by accelerated skeletal turnover. These drugs can be grouped in three different classes: first-generation, non-nitrogen containing BPs (e.g., clodronate and etidronate), second-generation nitrogen-containing BPs (N-BPs, e.g., pamidronate and alendronate) and third-generation N-BPs (e.g., ibandronate and zoledronate) and the phosphonocarboxylate analogue 3-PEHPC. BPs have several common properties, including poor intestinal absorption, high affinity for bone mineral, inhibitory effects on osteoclastic bone resorption, prolonged bone retention, and elimination in the urine. They are generally well tolerated, even if side effects have been described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rogers MJ, Gordon S, Benford HL et al (2000) Cellular and molecular mechanism of action of bisphoshonate. Cancer 88:2961–2978

    Article  PubMed  CAS  Google Scholar 

  2. Roger MJ (2003) New insights into the molecular mechanism of action of bisphosphonates. Curr Pharm Des 9:2643–2658

    Article  Google Scholar 

  3. Russell RG (2007) Bisphosphonates: mode of action and pharmacology. Pediatrics 119:S150–S162

    Article  PubMed  Google Scholar 

  4. Russell RG (2006) Bisphosphonates: from bench to bedside. Ann NY Acad Sci 1068:367–401

    Article  PubMed  CAS  Google Scholar 

  5. Chapurlat RD, Delmas PD (2006) Drug insight: bisphosphonates for postmenopausal osteoporosis. Nat Clin Pract Endocrinol Metab 2:211–219

    Article  PubMed  CAS  Google Scholar 

  6. Alakangas A, Selander K, Mulari M et al (2002) Alendronate disturbs vesicular trafficking in osteoclasts. Calcif Tissue Int 70:40–47

    Article  PubMed  CAS  Google Scholar 

  7. Roelofs AJ, Thompson K, Gordon S et al (2006) Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res 12:6222s–6230s

    Article  PubMed  CAS  Google Scholar 

  8. Coxon FP, Ebetino FH, Mules EH et al (2005) Phosphonocarboxylate inhibitors of Rab geranylgeranyl transferase disrupt the prenylation and membrane localization of Rab proteins in osteoclasts in vitro and in vivo. Bone 37:349–358

    Article  PubMed  CAS  Google Scholar 

  9. Coxon FP, Helfrich MH, Larijani B et al (2001) Identification of a novel phosphonocarboxylate inhibitor of Rab geranylgeranyl transferase that specifically prevents Rab prenylation in osteoclasts and macrophages. J Biol Chem 276:48213–48222

    PubMed  CAS  Google Scholar 

  10. Papapoulos SE (2001) Bisphosphonates in the management of postmenopausal osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis, 2nd edn. Academic, San Diego

    Google Scholar 

  11. Barrett J, Worth E, Bauss F et al (2004) Ibandronate: a clinical pharmacological and pharmacoknetic update. J Clin Pharmacol 44:951–965

    Article  PubMed  CAS  Google Scholar 

  12. Cremers SCLM, Pillai G, Papapoulos SE (2005) Pharmacokinetics-pharmacodynamics of bisphosphonates. Clin Pharmacokinet 44:551–570

    Article  PubMed  CAS  Google Scholar 

  13. Russel RGG (2007) Determinants of structure-function relationships among bisphosphonates. Bone 40:S21–S25

    Article  Google Scholar 

  14. Riis BJ, Ise J, von Stein T et al (2001) Ibandronate: a comparison of oral daily dosing versus intermittent dosing in postmenopausal osteoporosis. J Bone Miner Res 16:1871–1878

    Article  PubMed  CAS  Google Scholar 

  15. Tankó LB, Mouritzen U, Lehmann HJ et al (2003) Oral ibandronate: changes in markers of bone turnover during adequately dosed continuous and weekly therapy and during different suboptimally dosed treatment regimens. Bone 32:687–693

    Article  PubMed  Google Scholar 

  16. Liamis G, Milionis HJ, Elisaf M (2009) A review of drug-induced hypocalcemia. Bone Miner Metab 27:635–642

    Article  CAS  Google Scholar 

  17. Levine MA, Grootendorst P (2000) Proportion of osteoporotic post-menopausal women at increased risk for upper GI adverse events associated with bisphosphonate therapy. Pharmacoepidemiol Drug Saf 9:367–370

    Article  PubMed  CAS  Google Scholar 

  18. Fraunfelder FW, Fraunfelder FT, Jensvold B (2003) Scleritis and other ocular side effects associated with pamidronate disodium. Am J Ophthalmol 135:219–222

    Article  PubMed  CAS  Google Scholar 

  19. French DD, Margo CE (2008) Postmarketing surveillance of uveitis and scleritis with bisphosphonates among a national veteran cohort. Retina 28:889–893

    Article  PubMed  Google Scholar 

  20. Maalouf NM, Heller HJ, Odvina CV et al (2006) Bisphosphonate-induced hypocalcemia: report of 3 cases and review of literature. Endocr Pract 12:48–53

    PubMed  Google Scholar 

  21. Odvina CV, Zerwekh JE, Rao ES et al (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90:1294–1301

    Article  PubMed  CAS  Google Scholar 

  22. Visekruna M, Wilson D, McKienan FE (2008) Severely suppressed bone turnover and atypical skeletal fragility. J Clin Endocrinol Metab 93:2948–2952

    Article  PubMed  CAS  Google Scholar 

  23. US Food and Drug Administration (2008) Information for healthcare professionals: bisphosphonates (marketed as Actonel, Actonel Ca, Aredia, Boniva, Didronel, Fosamax, Fosamax D, Reclast, Skelid, and Zometa), January 7, 2008. http://www.fda.gov/CDER/drug/InfoSheets/HCP/bisphosphonatesHCP.htm. Accessed 6 June 2008

  24. Hewitt RE, Lissina A, Green AE et al (2005) The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol 139:101–111

    Article  PubMed  CAS  Google Scholar 

  25. Edwards BJ, Gounder M, McKoy JM et al (2008) Pharmacovigilance and reporting oversight in US FDA fast-track process: bisphosphonates and osteonecrosis of the jaw. Lancet Oncol 9:1166–1172

    Article  PubMed  Google Scholar 

  26. King AE, Umland EM (2008) Osteonecrosis of the jaw in patients receiving intravenous or oral bisphosphonates. Pharmacotherapy 28:667–677

    Article  PubMed  CAS  Google Scholar 

  27. Ruggiero S, Gralow J, Marx RE (2006) Practical guidelines for the prevention, diagnosis, and treatment of osteonecrosis of the jaw in patients with cancer. J Oncol Pract 2:7–14

    Article  PubMed  Google Scholar 

  28. Marx RE, Cillo JE Jr, Ulloa JJ (2007) Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg 65:2397–2410

    Article  PubMed  Google Scholar 

  29. Kontoleon P, Ilias I, Stavropoulos PG et al (2000) Urticaria after administration of alendronate. Acta Derm Venereol 80:398

    PubMed  CAS  Google Scholar 

  30. Wysowski DK (2009) Reports of esophageal cancer with oral bisphosphonate use. N Engl J Med 360:89–90

    Article  PubMed  CAS  Google Scholar 

  31. Cummings SR, Schwartz AV (2007) Alendronate and atrial fibrillation. N Engl J Med 356:1895–1896

    Article  PubMed  CAS  Google Scholar 

  32. Halabe A, Lifschitz BM, Azuri J (2000) Liver damage due to alendronate. N Engl J Med 343:365–366

    Article  PubMed  CAS  Google Scholar 

  33. Ten Dam MA, Hilbrands LB, Wetzels JF (2010) Nephrotic syndrome induced by pamidronate. Med Oncol Sep 24 (Epub ahead of print)

    Google Scholar 

  34. Weide R, Koppler H, Antras L et al (2010) Renal toxicity in patients with multiple myeloma receiving zoledronic acid vs. ibandronate: a retrospective medical records review. J Cancer Res Ther 6:31–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Filippo Zagarella for his skilled technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina De Sarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Milan

About this chapter

Cite this chapter

De Sarro, A., Minutoli, L. (2012). Pharmacology: Mechanism of Action of Bisphosphonates. In: De Ponte, F. (eds) Bisphosphonates and Osteonecrosis of the Jaw: A Multidisciplinary Approach. Springer, Milano. https://doi.org/10.1007/978-88-470-2083-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2083-2_2

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2082-5

  • Online ISBN: 978-88-470-2083-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics