Skip to main content

Multiscale computational analysis of degradable polymers

  • Chapter
Modeling of Physiological Flows

Abstract

Degradable materials have found a wide variety of applications in the biomedical field ranging from sutures, pins and screws for orthopedic surgery, local drug delivery, tissue engineering scaffolds, and endovascular stents. Polymer degradation is the irreversible chain scission process that breaks polymer chains down to oligomers and, finally, to monomers. These changes, which take place at the molecular scale, propagate through the space/time scales and not only affect the capacity of the polymer to release drugs, bu also hamper the overall mechanical behaviour of the device, whose spatial scale is denoted as macroscale. A bottom-up multiscale analysis is applied to model the degradation mechanism which takes place in PLA matrices. The macroscale model is based on diffusion-reaction equations for hydrolytic polymer degradation and erosion while the microscale model is based on atomistic simulations to predict the water diffusion as a function of the swelling degree of the PLA matrix. The diffusion coefficients are then passed to the macroscale model. In conclusion, the proposed multiscale analysis is capable to predict the evolution with time of several properties of water/PLA mixtures, according to the change of relevant indicators such as the extent of degradation and erosion of the PLA matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal C.M., Ray R.B.: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, J. Biomed. Mater. Res. 55: 141–150, 2001.

    Article  Google Scholar 

  2. Ali S.A., Doherty P.J., Williams D.F.: Mechanisms of polymer degradation in implantable devices. 2. Poly(dl-lactic acid), J. Biomed. Mater. Res. 27: 1409–1418, 1993.

    Article  Google Scholar 

  3. Ali S.A., Zhong S.P., Doherty P.J., Williams D.F.: Mechanisms of polymer degradation in implantable devices. 1. Poly(caprolactone), Biomaterials 14: 648–656, 1993.

    Article  Google Scholar 

  4. Ballauff M., Wolf B.A.: Degradation of chain molecules .1. Exact solution of the kinetic-equations, Macromolecules 14: 654–658, 1981.

    Article  Google Scholar 

  5. Batycky R.P., Hanes J., Langer R., Edwards D.A.: A theoretical model of erosion and macro-molecular drug release from biodegrading microspheres, J. Pharm. Sci. 86: 1464–1477, 1997.

    Article  Google Scholar 

  6. Bose S.M., Git Y.: Mathematical modelling and computer simulation of linear polymer degradation: Simple scissions, Macromol. Theor. Simul. 13: 453–473, 2004.

    Article  Google Scholar 

  7. Burkersroda F.V., Schedl L., Gopferich A.: Why degradable polymers undergo surface erosion or bulk erosion, Biomaterials 23: 4221–4231, 2002.

    Article  Google Scholar 

  8. Deuflhard S.: A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting, Numer. Math. 22: 289–315, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  9. Emsley A.M., Heywood R.J.: Computer modeling of the degradation of linear-polymers, Polym. Degrad. Stabil. 49: 145–149, 1995.

    Article  Google Scholar 

  10. Entrialgo-Castano M., Lendlein A., et al.: Molecular modeling investigations of dry and two water-swollen states of biodegradable polymers. Advanced Engineering Materials 8(5): 434–439, 2008.

    Article  Google Scholar 

  11. A. Gautieri, Ionita M., et al.: Computer-Aided Molecular Modeling and experimental validation of water permeability properties biosynthetic materials. Journal of Computational and Theoretical Nanoscience 7: 1–7, 2010.

    Article  Google Scholar 

  12. Gopferich A.: Polymer degradation and erosion: Mechanisms and applications, Eur. J. Pharm. Biopharm. 4: 1–11, 1996.

    Google Scholar 

  13. Gopferich A.: Mechanisms of polymer degradation and elimination, in: A.J. Domb, J. Kost, D.M. Wiseman (eds.), Handbook of biodegradable polymers, Drug targeting and delivery, Harwood Academic Publishers, Australia, 1997, pp. 451–471.

    Google Scholar 

  14. Gopferich A., Langer R.: Modeling polymer erosion, Macromolecules 26: 4105–4112, 1993.

    Article  Google Scholar 

  15. Hairer E., Wanner G.: Solving ordinary differential equations II, Springer Series in Computational Mathematics 14, Springer-Verlag, Berlin, 2nd ed., 1996.

    Google Scholar 

  16. Hayashi T.: Biodegradable polymers for biomedical uses, Prog. Polym. Sci. 19: 663–702, 1994.

    Article  Google Scholar 

  17. Heller J., Baker R.W.: Theory and practice of controlled drug delivery from bioerodible polymers, in: R.W. Baker (ed.), Controlled release of bioactive materials, Academic Press, New York, 1980, pp. 1–18.

    Google Scholar 

  18. Hofmann, D., L. Fritz, et al.: Detailed-atomistic molecular modeling of small molecule diffii-sion and solution processes in polymeric membrane materials. Macromolecular Theory and Simulations 9(6): 293–327, 2000.

    Article  Google Scholar 

  19. Ionita M., Silvestri D., et al.: Diffusion of small molecules in bioartificial membranes for clinical use: molecular modelling and laboratory investigation. Desalination 200(1–3): 157–159, 2006.

    Article  Google Scholar 

  20. Joshi A., Himmelstein K.J.: Dynamics of controlled release from bioerodible matrices, J. Control. Release 15: 95–104, 1991.

    Article  Google Scholar 

  21. Kotliar A.M., Podgor S.: Evaluation of molecular size distributions and molecular weight averages resulting from random crosslinking and chain-scission processes, J. Polym. Sci. 55: 423–436, 1961.

    Article  Google Scholar 

  22. Kuhn W.: The kinetics of the decomposition of high molecular chains, Ber. Deut. Chem. Ges. 63: 1503–1509, 1930.

    Article  Google Scholar 

  23. Langer R.: Drug delivery and targeting, Nature 392: 5–10, 1998.

    Google Scholar 

  24. Laufman H., Rubel T.: Synthetic absorable sutures, Surg. Gynecol. Obstet. 145: 597–608, 1977.

    Google Scholar 

  25. Lee P.I.: Diffusional release of a solute from a polymeric matrix - approximate analytical solutions, Journal of Membrane Science 7: 255–275, 1980.

    Article  Google Scholar 

  26. Lemaire V., Belair J., Hildgen P.: Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process, Int. J. Pharm. 258: 95–107, 2003.

    Article  Google Scholar 

  27. Li S.M., McCarthy S.: Further investigations on the hydrolytic degradation of poly(dl-lactide), Biomaterials 20: 35–44, 1999.

    Article  Google Scholar 

  28. Li S., Garreau H., Vert M.: Structure-property relationships in the case of degradation of massive poly(-hydroxy acids) in aqueous media - part 3: Influence of the morphology of poly(l-lactic acid), Journal of Materials Science: Materials in Medicine S: 198–206, 1990.

    Article  Google Scholar 

  29. Li S.M., Vert M.: Morphological-changes resulting from the hydrolytic degradation of stere-ocopolymers derived from l-lactides and dl-lactides, Macromolecules 27: 3107–3110, 1994.

    Article  Google Scholar 

  30. Miller R.A., Brady J.M., Cutright D.E.: Degradation rates of oral resorbable implants (poly-lactates and polyglycolates): Rate modification with changes in pla/pga copolymer ratios, J. Biomed. Mater. Res. 11: 711–719, 1977.

    Article  Google Scholar 

  31. Montroll E.W., Simha R.: Theory of depolymerization of long chain molecules, J. Chem. Phys. 8: 721–727, 1940.

    Article  Google Scholar 

  32. Moore J., Soares J., Rajagopal K.: Biodegradable stents: Biomechanical modeling challenges and opportunities, Cardiovascular Engineering and Technology 1: 52–65, 2010.

    Article  Google Scholar 

  33. Nguyen T.Q.: Kinetics of mechanochemical degradation by gel permeation chromatography, Polym. Degrad. Stabil. 46: 99–111, 1994.

    Article  Google Scholar 

  34. Nguyen T.Q., Kausch H.H.: Gpc data interpretation in mechanochemical polymer degradation, Int. J. Polym. Anal. Ch. 4: 447–470, 1998.

    Article  Google Scholar 

  35. Ottenbrite R.M., Albertsson A.C., Scott G.: Discussion on degradation terminology, in: M. Vert, J. Feijen, A.C. Albertsson, G. Scott, E. Chiellini (eds.), Biodegradable polymers and plastics, The Royal Society of Chemisty, Cambridge, 1992, pp. 73–92.

    Google Scholar 

  36. Prabhu S., Hossainy S.: Modeling of degradation and drug release from a biodegradable stent coating, J. Biomed. Mater. Res. A 80A (2007) 732–741.

    Article  Google Scholar 

  37. Pietrzak W.S., Sarver D.R., Verstynen M.L.: Bioabsorbable polymer science for the practicing surgeon, J. Craniofac. Surg. 8: 87–91, 1997.

    Article  Google Scholar 

  38. Pistner H., Bendix D.R., Muhling J., Reuther J.F.: Poly(l-lactide) - a long-term degradation study in vivo .3. Analytical characterization, Biomaterials 14: 291–298, 1993.

    Article  Google Scholar 

  39. Quarteroni A., Valli A.: Numerical approximation of partial differential equations, Springer Series in Computational Mathematics 23, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  40. Siepmann J., Gopferich A.: Mathematical modeling of bioerodible, polymeric drug delivery systems, Adv. Drug Deliver. Rev. 48 (2001): 229–247.

    Article  Google Scholar 

  41. Siparsky G.L., Voorhees K.J., Dorgan J.R., Schilling K.: Water transport in polylactic acid (PLA), PLA/polycaprolactone copolymers, and PLA polyethylene glycol blends. Journal of Environmental Polymer Degradation 5(3): 125–36, 1997.

    Google Scholar 

  42. Soares J.S.: Bioabsorbable polymeric drug-eluting endovascular stents: A clinical review, Minerva Biotecnologica 21: 217–230, 2009.

    MathSciNet  Google Scholar 

  43. Soares J.S., Zunino P.: A mixture model for water uptake, degradation, erosion, and drug release from polydisperse polymeric networks, Biomaterials 31: 3032–3042, 2010.

    Article  Google Scholar 

  44. H. Sun,: COMPASS: An ab initio force-field optimized for condensed-phase applications — Overview with details on alkane and benzene compounds. Journal Of Physical Chemistry B 102(38): 7338–7364, 1998.

    Article  Google Scholar 

  45. Tamada J.A., Langer R.: Erosion kinetics of hydrolytically degradable polymers, Proc. Natl. Acad. Sci. USA 90: 552–556, 1993.

    Article  Google Scholar 

  46. Thombre A.G.: Theoretical aspects of polymer biodegradation: Mathematical modeling of drug release and acid-catalyzed poly(otho-ester) biodegradation, in: M. Vert, J. Feijen, A.C. Albertsson, G. Scott, E. Chiellini (eds.), Biodegradable polymers and plastics, The Royal Society of Chemisty, Cambridge, 1992, pp. 214–225.

    Google Scholar 

  47. Thombre A.G., Himmelstein K.J.: A simultaneous transport-reaction model for controlled drug delivery from catalyzed bioerodible polymer matrices, AIChE Journal 31: 759–766, 1985.

    Article  Google Scholar 

  48. Vert M., Li S., Garreau H., Mauduit J., Boustta M., Schwach G., Engel R., Coudane J.: Complexity of the hydrolytic degradation of aliphatic polyesters, Angew. Markomol. Chemie 247: 239–253, 1997.

    Article  Google Scholar 

  49. Wu X.S., Wang N.: Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part ii: Biodegradation. J. Biomater. Sci. Polym. Ed. 12: 21–34, 2001.

    Article  Google Scholar 

  50. Zygourakis K.: Development and temporal evolution of erosion fronts in bioerodible controlled release devices, Chemical Engineering Science 45: 2359–2366, 1990.

    Article  Google Scholar 

  51. Harvey M.J., Giupponi G., De Fabritiis G.: ACEMD: Accelerating biomolecular dynamics in the microsecond time scale, Journal of Chemical Theory and Computation 5: 1632–1639, 2009.

    Article  Google Scholar 

  52. Stone J.E., Phillips J.C., Freddolino P.L., Hardy D.J., Trabuco L.G., Schulten K.: Accelerating molecular modeling applications with graphics processors, Journal of Computational Chemistry 28: 2618–2640, 2007.

    Article  Google Scholar 

  53. Friedrichs M.S., Eastman P., Vaidyanathan V., Houston M., Legrand S., Beberg A.L., Ensign D.L., Bruns C.M., Pande V.S.: Accelerating molecular dynamic simulation on graphics processing units, Journal of Computational Chemistry 30: 864–872, 2009.

    Article  Google Scholar 

  54. Yuval G., Amnon A., Shlomo A.: Anomalous Diffusion on Percolating Clusters. Phys Rev Lett. 50: 77–80, 1983.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Italian Institute of Technology, with the Grant: Models and methods for degradable materials, and the European Research Council Advanced Grant: MathcardMathematical Modelling and Simulation of the Cardiovascular System, Project ERC 2008 AdG 227058. JSS thanks the Portuguese Fundaçao para a Ciêcia e Tecnologia for its support, Grant SFRH/BPD/63119/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Zunino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Zunino, P., Vesentini, S., Porpora, A., Soares, J.S., Gautieri, A., Redaelli, A. (2012). Multiscale computational analysis of degradable polymers. In: Ambrosi, D., Quarteroni, A., Rozza, G. (eds) Modeling of Physiological Flows. MS&A — Modeling, Simulation and Applications, vol 5. Springer, Milano. https://doi.org/10.1007/978-88-470-1935-5_11

Download citation

Publish with us

Policies and ethics