Predicting the Effect of Driver Assistance via Simulation

  • Martin Fränzle
  • Tayfun Gezgin
  • Hardi Hungar
  • Stefan Puch
  • Gerald Sauter
Conference paper

Abstract

Developing assistance systems in the automotive domain involves several exploration and evaluation activities with potential users of the system. To replace the amount of human test subject involvement, executable models reproducing human behaviour are introduced. Together with models of the car, road, surrounding traffic and of course the assistance system, a complete representation of the assistance system in its application environment can then be constructed which may be used to predict effects of introducing the assistance without having to resort to experiments with humans. In this paper we present techniques concerned with the exploration of the behaviour spectrum of the combined models. We show how functionality and safety aspects of assisted driving can be evaluated in computer simulations already during early phases of the development process.

Keywords

Driver assistance systems Safety assessment Software in the loop Heterogeneous models Co-simulation 

Notes

Acknowledgments

The research reported here has been mainly performed in the project IMoST which is funded by the Ministry of Science and Culture of Lower Saxonia.

References

  1. 1.
    Baumann M, Colonius H, Hungar H, Köster F, Langner M, Lüdtke A, Möbus C, Peinke J, Puch S, Schiessl C, Steenken R, Weber L (2008) Integrated modelling for safe transportation—driver modeling and driver experiments. In: Jürgensohn T, Kolrep H (eds) Fahrermodellierung in Wissenschaft und Wirtschaft, 2. Berliner Fachtagung für Fahrzeugsmodellierung. VDI Verlag, DüsseldorfGoogle Scholar
  2. 2.
    Möbus C, Eilers M (2009) Further steps towards driver modeling according to the Bayesian programming approach. In: Conference Proceedings, HCI 2009, Digital Human Modeling, LNCS 5620, pp 413–422Google Scholar
  3. 3.
    Möbus C, Eilers M, Garbe H, Zilinski M (2009) Probabilistic, and empirical grounded modeling of agents in partial cooperative (traffic) scenarios. In: Conference Proceedings, HCI 2009, Digital Human Modeling, San Diego, LNCS 5620, pp 423–432Google Scholar
  4. 4.
    Weber L, Baumann M, Lüdtke A, Steenken R (2009) Modellierung von Entscheidungen beim Einfädeln auf die Autobahn. To appear: Fortschritts-Berichte VDI: Der Mensch im Mittelpunkt technischer Systeme. 8. Berliner Werkstatt Mensch-Maschine-SystemeGoogle Scholar
  5. 5.
    IEEE 1516-2000 Standard for modeling and simulation (M&S). High level architecture (HLA)—framework and rules, 2000Google Scholar
  6. 6.
    Gezgin T (2009) Observerbasierte on-the-fly Auswertung von QLTL-Formeln innerhalb eines HLA-Simulationsverbundes. Master’s thesis, Carl von Ossietzky University OldenburgGoogle Scholar
  7. 7.
    de Alfaro L, Faella M, Stoelinga M (2004) Linear and branching metrics for transition systems. In: Automata, languages and programming, LNCS 3142, pp 131–154Google Scholar
  8. 8.
    Sauter G, Dierks H, Fränzle M, Hansen MR (2009) Light-weight hybrid model checking facilitating online prediction of temporal properties. In: Proceedings of the 21st Nordic Workshop on Programming Theory, NWPT ‘09, Danmarks Tekniske Universitet, Kgs. Lyngby, Denmark, pp 20–22Google Scholar

Copyright information

© Springer-Verlag Italia Srl 2011

Authors and Affiliations

  • Martin Fränzle
    • 1
  • Tayfun Gezgin
    • 2
  • Hardi Hungar
    • 2
  • Stefan Puch
    • 1
  • Gerald Sauter
    • 1
  1. 1.Department of Computer ScienceCarl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.OFFISOldenburgGermany

Personalised recommendations