Skip to main content

Technical Innovations in Pelvic Floor Ultrasonography

  • Chapter

Abstract

In this chapter the diagnostic potential of evaluating structural and functional interactions of female pelvic floor structures using novel image-processing techniques is presented. Technical innovations include three-dimensional volume render mode, maximum intensity projection, manual segmentation and sculpting, fusion imaging, PixelFlux, framing, color vector mapping, and motion tracking. When introduced into routine clinical practice, these new modalities will improve the management of pelvic floor dysfunctions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Santoro GA, Fortling B. The advantages of volume rendering in three-dimensional endosonography of the anorectum. Dis Colon Rectum 2007;50:359–368.

    Article  PubMed  Google Scholar 

  2. Dietz HP, Steensma AB. Posterior compartment prolapse on two-dimensional and three-dimensional pelvic floor ultrasound: the distinction between true rectocele, perineal hypermobility and enterocele. Ultrasound Obstet Gynecol 2005;26:73–77.

    Article  CAS  PubMed  Google Scholar 

  3. Mitterberger M, Pinggera GM, Mueller T et al. Dynamic transurethral sonography and 3-dimensional reconstruction of the rhabdosphincter and urethra: initial experience in continent and incontinent women. J Ultrasound Med 2006;25:315–320.

    PubMed  Google Scholar 

  4. Santoro GA, Wieczorek AP, Stankiewicz A et al. High-resolution three-dimensional endovaginal ultrasonography in the assessment of pelvic floor anatomy: a preliminary study. Int Urogynecol J 2009;20:1213–1222.

    Article  Google Scholar 

  5. Saba L, Pascalis L, Mallagrini G. Multi-detector-row CT of muscles with volume rendering technique. Panminerva Med 2009;51:43–49.

    CAS  PubMed  Google Scholar 

  6. Kuo J, Bredthauer JG, Castellucci JB, von Ramm OT. Interactive volume rendering of real-time three-dimensional ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 2007;2:54.

    Google Scholar 

  7. Santoro GA, Gizzi, G, Pellegrini L et al. The value of highresolution three-dimensional endorectal ultrasonography in the management of submucosal invasive rectal tumor. Dis Colon Rectum 2009;52:1837–1843

    PubMed  Google Scholar 

  8. Ohishi H, Hirai T, Yamada R et al. Three-dimensional power Doppler sonography of tumor vascularity. J Ultrasound Med 1998;17:619–622

    CAS  PubMed  Google Scholar 

  9. Hamazaki N, Kounoike Y, Makinodan K et al. Usefulness of three-dimensional color Doppler sonography for the differential diagnosis of subpleural lesions. Nihon Kokyuki Gakkai Zasshi 2001;39:453–460.

    CAS  PubMed  Google Scholar 

  10. Motohide S, Go W, Masahiro O et al. Clinical application of three-dimensional ultrasound imaging as intraoperative navigation for liver surgery. Nippon Geka Gakkai Zasshi 1998;99:203–207.

    CAS  PubMed  Google Scholar 

  11. Wieczorek AP, Woźniak MM, Stankiewicz A et al (2009) Quantification of urethral vascularity with high-frequency endovaginal ultrasonography. Preliminary report in nulliparous females (personal communication).

    Google Scholar 

  12. Rothenberg F, Fisher SA, Watanabe M. Sculpting the cardiac outflow tract. Birth Defects Res C Embryo Today 2003; 69:38–45.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SK, Choi HJ, Park SY et al. Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer 2009;45:2103–2109.

    Article  PubMed  Google Scholar 

  14. Singh AK, Kruecker J, Xu S et al. Initial clinical experience with real-time transrectal ultrasonography-magnetic resonance imaging fusion-guided prostate biopsy. BJU Int 2008;101:841–845.

    Article  PubMed  Google Scholar 

  15. Selli C, Caramella D, Giusti S et al. Value of image fusion in the staging of prostatic carcinoma. Radiol Med 2007; 112:74–81.

    Article  CAS  PubMed  Google Scholar 

  16. Mukherji SK, Rosenman JG, Soltys M et al. A new technique for CT/MR fusion for skull base imaging. Skull Base Surg 1996;6:141–146.

    Article  CAS  PubMed  Google Scholar 

  17. Scholbach T, Herrero I, Scholbach J. Dynamic color Doppler sonography of intestinal wall in patients with Crohn disease compared with healthy subjects. J Pediatr Gastroenterol Nutr 2004;39:524–528.

    Article  PubMed  Google Scholar 

  18. Scholbach T, Girelli E, Scholbach J. Dynamic tissue perfusion measurement: a novel tool in follow-up of renal transplants. Transplantation 2005;79:1711–1716.

    Article  PubMed  Google Scholar 

  19. Wieczorek AP, Woźniak MM, Stankiewicz A et al. The assessment of normal female urethral vascularity with Color Doppler endovaginal ultrasonography: preliminary report. Pelviperineology 2009;28:59–61.

    Google Scholar 

  20. Pregazzi R, Sartore A, Bortoli P et al. Perineal ultrasound evaluation of urethral angle and bladder neck mobility in women with stress urinary incontinence. BJOG 2002; 109:821–827.

    Article  PubMed  Google Scholar 

  21. Rahmanian S, Jones R, Peng Q, Constantinou C. Visualization of biomechanical properties of female pelvic floor function using video motion tracking of ultrasound imaging. Stud Health Technol Inform 2008; 132:390–395.

    PubMed  Google Scholar 

  22. Huang YL, Chen HY. Computer-aided diagnosis of urodynamic stress incontinence with vector-based perineal ultrasound using neural networks. Ultrasound Obstet Gynecol 2007;30:1002–1006.

    Article  PubMed  Google Scholar 

  23. Reddy AP, DeLancey JOL, Zwica LM, Ashton-Miller JM. On-screen vector-based ultrasound assessment of vesical neck movement. Am J Obstet Gynecol 2001;185:65–70.

    Article  CAS  PubMed  Google Scholar 

  24. Peng Q, Jones R, Shishido K, Constantinou CE. Ultrasound evaluation of dynamic responses of female pelvic floor muscles. Ultrasound Med Biol 2007;33:342–352.

    Article  PubMed  Google Scholar 

  25. Constantinou C. Dynamics of female pelvic floor function using urodynamics, ultrasound and magnetic resonance imaging. Europ J Obstet Gynecol Reprod Biol 2009;144S:S159–S165.

    Article  Google Scholar 

  26. Chlebiej M, Nowiński K, Ścislo P, Bala P. Reconstruction of heart motion from 4D echocardiographic images. In: Kropatsch WG, Kampel M, Hanbury A (eds). Computer analysis of images and patterns. Lecture notes in computer science, volume 4673. Springer-Verlag, Berlin, Heidelberg, 2007, pp 245–252.

    Chapter  Google Scholar 

  27. Chlebiej M, Nowiński K, Ścislo P, Bala P. Heart motion visualization tools for 4D echocardiographic images. J Med Informat Technol 2007;11:177–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Santoro, G.A., Stankiewicz, A., Scholbach, J., Chlebiej, M., Wieczorek, A.P. (2010). Technical Innovations in Pelvic Floor Ultrasonography. In: Santoro, G.A., Wieczorek, A.P., Bartram, C.I. (eds) Pelvic Floor Disorders. Springer, Milano. https://doi.org/10.1007/978-88-470-1542-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1542-5_10

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1541-8

  • Online ISBN: 978-88-470-1542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics