Skip to main content

Bubble Behavior Testing (BBT) System for Ultrasound Contrast Agent Characterization

  • Chapter
Ultrasound Contrast Agents

Abstract

The acoustic characterization of Ultrasound Contrast Agents (UCA) can only be based on equipment having high sensitivity (to be able to detect the echoes produced by single microbubbles) and flexibility (to adapt to a variety of experimental conditions). In this chapter, the Bubble Behavior Testing (BBT) system is presented, and shown as an ideal tool to report on the behavior of UCA in ultrasound fields. First, its basic configuration is described (including the front-end circuits to-from two single-element transducers as well as the digital resources for transmission of arbitrary signals and processing of received echoes). Two applications of the BBT system are then discussed. The interrogation of microbubbles freely floating in a water tank, is shown to be useful to characterize the UCA by observing their response to ultrasound force. Coupling of the BBT system to a synchronized high-speed optical camera is finally demonstrated to be capable of tracking the echoes of a single deflating bubble, i.e. with variable diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloch SH, Wan M, Dayton PA and Ferrara KA (2004) Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents. Appl Phys Lett 84(4):631–633

    Article  Google Scholar 

  2. Borden MA et al. (2004) Surface behavior and microstructure of lipid/ PEGemulsifier monolayer-coated microbubbles. Colloids Surf B 35:209–223

    Article  Google Scholar 

  3. Borden MA et al. (2005) Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE Trans Ultrason Ferroelectr Freq Control 52(11):1992–2002

    Article  Google Scholar 

  4. Bouakaz A, Versluis M and de Jong N (2005) High-speed optical observations of contrast agent destruction. Ultrasound Med Biol 31(3):391–399

    Article  Google Scholar 

  5. Chatterjee D and Sarkar K (2005) A newtonian rehological model for the interface of microbubble contrast agents. Ultrasound Med Biol 29(12):1749–1757

    Article  Google Scholar 

  6. Chomas JE et al. (2001) Mechanism of contrast agent destruction., IEEE Trans Ultrason Ferroel Freq Contr 48(1):232–248

    Article  Google Scholar 

  7. Chomas JE et al. (2001) Threshold of fragmentation for ultrasonic contrast agents. J Biomed Opt 6(2):141–150

    Article  Google Scholar 

  8. Dayton PA, Allen JS and Ferrara KW (2002) The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am 112(5):2183–2192

    Article  Google Scholar 

  9. Dayton PA et al. (1999) Optical and acoustical observation of the effects of ultrasound on contrast agents. IEEE Trans Ultrason Ferroelectr Freq Contr 46(1):220–232

    Article  Google Scholar 

  10. de Jong N et al. (2007) “Compression-only behavior” of phospholipid-coated contrast bubbles. Ultrasound Med Biol 33:653–656

    Article  Google Scholar 

  11. Doinikov A (1998) Acoustic radiation force on a bubble: Viscous and thermal. J Acoust Soc Am 103(1):143–147

    Article  Google Scholar 

  12. Eller A (1968) Force on a bubble in a standing acoustic wave. J Acoust Soc Am 43(1):170–171

    Article  Google Scholar 

  13. Emmer M et al. (2007) The onset of microbubble vibration. Ultrasound Med Biol 33(6):941–949

    Article  Google Scholar 

  14. Garbin V et al. (2007) Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high speed imaging. J Appl Phys L 90(11):114103

    Article  Google Scholar 

  15. Guan J and Matula TJ (2004) Using light scattering to measure the response of individual ultrasound contrast microbubbles subjected to pulsed ultrasound in vitro. J Acoust Soc Am 116:2832–2842

    Article  Google Scholar 

  16. Guidi F et al. (2005) Acoustical imaging of individual microbubbles. Acoust Imag 28:257–265.

    Article  Google Scholar 

  17. Khismatullin DB (2004) Resonance frequency of microbubbles: effect of viscosity. J Acoust Soc Am 116(3):1463–1473

    Article  Google Scholar 

  18. Khismatullin DB and Nadim A (2002) Radial oscillation of ancapsulated microbubbles in viscoelastic liquids. Phys Fluids 14:3534–3557

    Article  Google Scholar 

  19. Leighton TG (1994) The acoustic bubble. Academic Press, London

    Google Scholar 

  20. Marmottant P, van der Meer SM, Emmer M, Versluis M, de Jong N, Hilgenfeldt S and Lohse D (2005) A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Am 118(6):3499–3505

    Article  Google Scholar 

  21. Postema M et al. (2004) Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med Biol 30(6):827–840

    Article  Google Scholar 

  22. Pu G, Borden MA and Longo ML (2006) Collapse and shedding transition in binary lipid monolayer. Langmuir (22):2993–2999

    Article  Google Scholar 

  23. Pu G, Longo Marjorie L and Borden MA (2005) Effects of microstructure on molecular oxygen permeation through condensed phospolipid monolayer. J Am Chem Soc 127:6524–6525

    Article  Google Scholar 

  24. Qiu H-H and Hsu CT (2004) The impact of high order refraction on optical micrdobubble sizing in multiphase flows. Exper Fluids 36:100–107

    Article  Google Scholar 

  25. Sboros V et al. (2004) An in vitro study of a microbubble contrast agent. Phys Med Biol 49:159–173

    Article  Google Scholar 

  26. Stride E and Saffari N (2003) Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng Proc Part H 217(H6):429–447

    Article  Google Scholar 

  27. Sun Y et al. (2006) High-frequency dynamics of ultrasound contrast agents. IEEE Trans Ultrason Ferroelect Freq Control 52(11):1981–1991

    Google Scholar 

  28. Tortoli P, Pratesi M and Michelassi V (2000) Doppler spectra from contrast agents crossing an ultrasound field. IEEE Trans Ultrason Ferroelectr Freq Contr 47(3):716–726

    Article  Google Scholar 

  29. van der Meer SM et al. (2007) Microbubble spectroscopy of ultrasound contrast agents. J Acoust Soc Am 121(1):648–656

    Article  MathSciNet  Google Scholar 

  30. Vos HJ et al. (2007) Method for microbubble characterization using primary radiation force. IEEE Trans Ultrason Ferroelectr Freq Contr 54(7):1333–1345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Guidi, F., Mori, R., Vos, H.J., Tortoli, P. (2010). Bubble Behavior Testing (BBT) System for Ultrasound Contrast Agent Characterization. In: Paradossi, G., Pellegretti, P., Trucco, A. (eds) Ultrasound Contrast Agents. Springer, Milano. https://doi.org/10.1007/978-88-470-1494-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1494-7_12

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1493-0

  • Online ISBN: 978-88-470-1494-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics