Skip to main content

Uremic Toxins

  • Chapter
Cardiorenal Syndrome

Abstract

A major complication of chronic kidney disease (CKD) is concomitant cardiovascular damage. Although patients suffering from CKD are frequently affected by a number of other conditions and/or comorbidities that enhance the cardiovascular risk, such as hypertension, insulin resistance, fluid overload, anemia, diabetes mellitus, and dyslipidaemia, the weight of these factors perse is insufficient to explain the entire uremic cardiovascular problem; therefore, it has been suggested that factors specific to CKD, such as the uremic milieu, must play a central role. In this chapter, we review current knowledge on uremic toxins with a potential cardiovascular impact, emphasizing their specific effects on the major cell types involved in this process, such as leukocytes, endothelial cells, vascular smooth muscle cells, and platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vanholder R, Massy Z, Argiles A et al (2005) Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant 20:1048–1056

    Article  CAS  PubMed  Google Scholar 

  2. Briet M, Bozec E, Laurent S et al (2006) Arterial stiffness and enlargement in mild-to-moderate chronic kidney disease. Kidney Int 69:350–357

    Article  CAS  PubMed  Google Scholar 

  3. Stenvinkel P, Heimburger O, Paultre F et al (1999) Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int 55:1899–1911

    Article  CAS  PubMed  Google Scholar 

  4. Vanholder R, De Smet R, Glorieux G et al (2003) Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int 63:1934–1943

    Article  CAS  PubMed  Google Scholar 

  5. Thornalley PJ (2005) Glycation free adduct accumulation in renal disease: the new AGE. Pediatr Nephrol 20:1515–1522

    Article  PubMed  Google Scholar 

  6. Witko-Sarsat V, Friedlander M, Nguyen KT et al (1998) Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 161:2524–2532

    CAS  PubMed  Google Scholar 

  7. Glorieux G, Helling R, Henle T et al (2004) In vitro evidence for immune activating effect of specific AGE structures retained in uremia. Kidney International 66:1873–1880

    Article  CAS  PubMed  Google Scholar 

  8. Hofmann MA, Drury S, Fu C et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    Article  CAS  PubMed  Google Scholar 

  9. Mori Y, Kosaki A, Kishimoto N et al (2009) Increased plasma S100A12 (EN-RAGE) levels in hemodialysis patients with atherosclerosis. Am J Nephrol 29:18–24

    Article  CAS  PubMed  Google Scholar 

  10. Dobler D, Ahmed N, Song L et al (2006) Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes 55:1961–1969

    Article  CAS  PubMed  Google Scholar 

  11. Segal MS, Bihorac A, Koc M (2002) Circulating endothelial cells: tea leaves for renal disease. Am J Physiol Renal Physiol 283:F11–F19

    CAS  PubMed  Google Scholar 

  12. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C et al (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313

    Article  CAS  PubMed  Google Scholar 

  13. Valli A, Suliman ME, Meert N et al (2007) Overestimation of advanced oxidation protein products in uremic plasma due to presence of triglycerides and other endogenous factors. Clin Chim Acta 379:87–94

    Article  CAS  PubMed  Google Scholar 

  14. Adams SA, Subramanian V (1999) The angiogenins: an emerging family of ribonuclease related proteins with diverse cellular functions. Angiogenesis 3:189–199

    Article  CAS  PubMed  Google Scholar 

  15. Jankowski V, Vanholder R, van der Giet M et al (2007) Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol 27:297–302

    Article  CAS  PubMed  Google Scholar 

  16. Pascual M, Schifferli JA (1993) Adsorption of complement factor D by polyacrylonitrile dialysis membranes. Kidney Int 43:903–911

    Article  CAS  PubMed  Google Scholar 

  17. Dou L, Cerini C, Brunet P et al (2002) P-cresol, a uremic toxin, decreases endothelial cell response to inflammatory cytokines. Kidney Int 62:1999–2009

    Article  CAS  PubMed  Google Scholar 

  18. Schepers E, Meert N, Glorieux G et al (2007) P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol Dial Transplant 22:592–596

    Article  CAS  PubMed  Google Scholar 

  19. Bammens B, Evenepoel P, Keuleers H et al (2006) Free serum concentrations of the proteinbound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int 69:1081–1087

    Article  CAS  PubMed  Google Scholar 

  20. Stenvinkel P, Heimburger O, Jogestrand T (2002) Elevated interleukin-6 predicts progressive carotid artery atherosclerosis in dialysis patients: association with Chlamydia pneumoniae seropositivity. Am J Kidney Dis 39:274–282

    Article  CAS  PubMed  Google Scholar 

  21. Ogilvie A (2005) Extracellular functions for ApnA. In: McLennan AG (ed) Ap4A and other dinucleoside polyphosphates, pp 229–273. CRC Press Inc., London

    Google Scholar 

  22. Jankowski V, Patzak A, Herget-Rosenthal S et al (2008) Uridine adenosine tetraphosphate acts as an autocrine hormone affecting glomerular filtration rate. J Mol Med 86:333–340

    Article  CAS  PubMed  Google Scholar 

  23. Jankowski V, Meyer AA, Schlattmann P et al (2007) Increased uridine adenosine tetraphosphate concentrations in plasma of juvenile hypertensives. Arterioscler Thromb Vasc Biol 27:1776–1781

    Article  CAS  PubMed  Google Scholar 

  24. De Deyn PP, Marescau B, D’Hooge R et al (1995) Guanidino compound levels in brain regions of non-dialyzed uremic patients. Neurochem Int 27:227–237

    Article  PubMed  Google Scholar 

  25. D’Hooge R, Van de Vijver, Van Bogaert PP et al (2003) Involvement of voltage-and ligandgated Ca2+ channels in the neuroexcitatory and synergistic effects of putative uremic neurotoxins. Kidney Int 63:1764–1775

    Article  PubMed  Google Scholar 

  26. Kielstein JT, Impraim B, Simmel S et al (2004) Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation 109:172–177

    Article  CAS  PubMed  Google Scholar 

  27. Hirayama A, Noronha-Dutra AA, Gordge MP et al (2000) Inhibition of neutrophil superoxide production by uremic concentrations of guanidino compounds. J Am Soc Nephrol 11:684–689

    CAS  PubMed  Google Scholar 

  28. Glorieux GL, Dhondt AW, Jacobs P et al (2004) In vitro study of the potential role of guanidines in leukocyte functions related to atherogenesis and infection. Kidney Int 65:2184–2192

    Article  CAS  PubMed  Google Scholar 

  29. Perna AF, Ingrosso D, Satta E et al (2004) Plasma protein aspartyl damage is increased in hemodialysis patients: Studies on causes and consequences. Journal of the American Society of Nephrology 15:2747–2754

    Article  CAS  PubMed  Google Scholar 

  30. Schepers E, Glorieux G, Dhondt A et al (2009) Role of symmetric dimethylarginine in vascular damage by increasing ROS via store-operated calcium influx in monocytes. Nephrol Dial Transplant 24:1429–1435

    Article  CAS  PubMed  Google Scholar 

  31. Kielstein JT, Salpeter SR, Buckley NS et al (2008) Two cardiovascular risk factors in one? Homocysteine and its relation to glomerular filtration rate. A meta-analysis of 41 studies with 27,000 participants. Kidney Blood Press Res 31:259–267

    Article  CAS  PubMed  Google Scholar 

  32. Au-Yeung KK, Yip JC, Siow YL, Karmin O (2006) Folic acid inhibits homocysteine-induced superoxide anion production and nuclear factor kappa B activation in macrophages. Can J Physiol Pharmacol 84:141–147

    Article  CAS  PubMed  Google Scholar 

  33. Touam M, Zingraff J, Jungers P et al (1999) Effective correction of hyperhomocysteinemia in hemodialysis patients by intravenous folinic acid and pyridoxine therapy. Kidney Int 56:2292–2296

    Article  CAS  PubMed  Google Scholar 

  34. van Guldener C, Lambert J, ter Wee PM et al (2000) Carotid artery stiffness in patients with end-stage renal disease: no effect of long-term homocysteine-lowering therapy. Clin Nephrol 53:33–41

    PubMed  Google Scholar 

  35. Lonn E (2008) Homocysteine-lowering B vitamin therapy in cardiovascular prevention—wrong again? JAMA 299:2086–2087

    Article  CAS  PubMed  Google Scholar 

  36. Hutchison CA, Harding S, Hewins P et al (2008) Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin J Am Soc Nephrol 3:1684–1690

    Article  CAS  PubMed  Google Scholar 

  37. Cohen G, Haag-Weber M, Mai B et al (1995) Effect of immunoglobulin light chains from hemodialysis and continuous ambulatory peritoneal dialysis patients on polymorphonuclear leukocyte functions. J Am Soc Nephrol 6:1592–1599

    CAS  PubMed  Google Scholar 

  38. Dou L, Jourde-Chiche N, Faure V et al (2007) The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost 5:1302–1308

    Article  CAS  PubMed  Google Scholar 

  39. Muteliefu G, Enomoto A, Niwa T (2009) Indoxyl sulfate promotes proliferation of human aortic smooth muscle cells by inducing oxidative stress. J Ren Nutr 19:29–32

    Article  CAS  PubMed  Google Scholar 

  40. Ueda H, Shibahara N, Takagi S et al (2008) AST-120 treatment in pre-dialysis period affects the prognosis in patients on hemodialysis. Ren Fail 30:856–860

    Article  CAS  PubMed  Google Scholar 

  41. Napoleone E, Di Santo A, Amore C et al (2007) Leptin induces tissue factor expression in human peripheral blood mononuclear cells: a possible link between obesity and cardiovascular risk?. J Thromb Haemost 5:1462–1468

    Article  CAS  PubMed  Google Scholar 

  42. Stenvinkel P, Lindholm B, Lonnqvist F et al (2000) Increases in serum leptin levels during peritoneal dialysis are associated with inflammation and a decrease in lean body mass. J Am Soc Nephrol 11:1303–1309

    CAS  PubMed  Google Scholar 

  43. Cheung W, Yu PX, Little BM et al (2005) Role of leptin and melanocortin signaling in uremia-associated cachexia. J Clin Invest 115:1659–1665

    Article  CAS  PubMed  Google Scholar 

  44. Don BR, Rosales LM, Levine NW et al (2001) Leptin is a negative acute phase protein in chronic hemodialysis patients. Kidney Int 59:1114–1120

    Article  CAS  PubMed  Google Scholar 

  45. Scholze A, Rattensperger D, Zidek W, Tepel M (2007) Low serum leptin predicts mortality in patients with chronic kidney disease stage 5. Obesity (Silver Spring) 15:1617–1622

    Article  CAS  Google Scholar 

  46. Niwa T, Sato M, Katsuzaki T et al (1996) Amyloid beta 2-microglobulin is modified with N epsilon-(carboxymethyl)lysine in dialysis-related amyloidosis. Kidney Int 50:1303–1309

    Article  CAS  PubMed  Google Scholar 

  47. Miyata T, Inagi R, Iida Y et al (1994) Involvement of beta 2-microglobulin modified with advanced glycation end products in the pathogenesis of hemodialysis-associated amyloidosis. Induction of human monocyte chemotaxis and macrophage secretion of tumor necrosis factor-alpha and interleukin-1. J Clin Invest 93:521–528

    Article  CAS  PubMed  Google Scholar 

  48. Rashid G, Benchetrit S, Fishman D, Bernheim J (2004) Effect of advanced glycation end-products on gene expression and synthesis of TNF-alpha and endothelial nitric oxide synthase by endothelial cells. Kidney Int 66:1099–1106

    Article  CAS  PubMed  Google Scholar 

  49. Menaa C, Esser E, Sprague SM (2008) Beta2-microglobulin stimulates osteoclast formation. Kidney Int 73:1275–1281

    Article  CAS  PubMed  Google Scholar 

  50. Cheung AK, Greene T, Leypoldt JK et al (2008) Association between serum beta(2)-microglobulin level and infectious mortality in hemodialysis patients. Clinical Journal of the American Society of Nephrology 3:69–77

    Article  CAS  PubMed  Google Scholar 

  51. Wilson AM, Kimura E, Harada RK et al (2007) beta 2-microglobulin as a biomarker in peripheral arterial disease — Proteomic profiling and clinical studies. Circulation 116:1396–1403

    Article  CAS  PubMed  Google Scholar 

  52. Saijo Y, Utsugi M, Yoshioka E et al (2005) Relationship of beta2-microglobulin to arterial stiffness in Japanese subjects. Hypertens Res 28:505–511

    Article  CAS  PubMed  Google Scholar 

  53. Boogaerts MA, Hammerschmidt DE, Roelant C et al (1983) Mechanisms of vascular damage in gout and oxalosis: crystal induced, granulocyte mediated, endothelial injury. Thromb Haemost 50:576–580

    CAS  PubMed  Google Scholar 

  54. Recht PA, Tepedino GJ, Siecke NW et al (2004) Oxalic acid alters intracellular calcium in endothelial cells. Atherosclerosis 173:321–328

    Article  CAS  PubMed  Google Scholar 

  55. Jankowski J, van der Giet M, Jankowski V et al (2003) Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression. J Clin Invest 112:256–264

    CAS  PubMed  Google Scholar 

  56. Schmidt S, Westhoff TH, Krauser P et al (2008) The uraemic toxin phenylacetic acid increases the formation of reactive oxygen species in vascular smooth muscle cells. Nephrol Dial Transplant 23:65–71

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt S, Westhoff TH, Krauser P et al (2008) The uraemic toxin phenylacetic acid impairs macrophage function. Nephrol Dial Transplant 23:3485–3493

    Article  CAS  PubMed  Google Scholar 

  58. Scholze A, Jankowski V, Henning L et al (2007) Phenylacetic acid and arterial vascular properties in patients with chronic kidney disease stage 5 on hemodialysis therapy. Nephron Clin Pract 107:c1–c6

    Article  CAS  PubMed  Google Scholar 

  59. Axelsson J, Bergsten A, Qureshi AR et al (2006) Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int 69:596–604

    Article  CAS  PubMed  Google Scholar 

  60. Yaturu S, Reddy RD, Rains J, Jain SK (2007) Plasma and urine levels of resistin and adiponectin in chronic kidney disease. Cytokine 37:1–5

    Article  CAS  PubMed  Google Scholar 

  61. Burnett MS, Lee CW, Kinnaird TD et al (2005) The potential role of resistin in atherogenesis. Atherosclerosis 182:241–248

    Article  CAS  PubMed  Google Scholar 

  62. Skilton MR, Nakhla S, Sieveking DP et al (2005) Pathophysiological levels of the obesity related peptides resistin and ghrelin increase adhesion molecule expression on human vascular endothelial cells. Clin Exp Pharmacol Physiol 32:839–844

    Article  CAS  PubMed  Google Scholar 

  63. Hu WL, Qian SB, Li JJ (2007) Decreased C-reactive protein-induced resistin production in human monocytes by simvastatin. Cytokine 40:201–206

    Article  CAS  PubMed  Google Scholar 

  64. Meert N, Eloot S, Waterloos MA et al (2009) Effective removal of protein-bound uraemic solutes by different convective strategies: a prospective trial. Nephrol Dial Transplant 24:562–570

    Article  CAS  PubMed  Google Scholar 

  65. Eloot S, Van Biesen W, Dhondt A et al (2008) Impact of hemodialysis duration on the removal of uremic retention solutes. Kidney Int 73:765–770

    Article  CAS  PubMed  Google Scholar 

  66. Eloot S, Torremans A, De Smet R et al (2005) Kinetic behavior of urea is different from that of other water-soluble compounds: the case of the guanidino compounds. Kidney Int 67:1566–1575

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Glorieux, G., Schepers, E., Vanholder, R. (2010). Uremic Toxins. In: Berbari, A.E., Mancia, G. (eds) Cardiorenal Syndrome. Springer, Milano. https://doi.org/10.1007/978-88-470-1463-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1463-3_16

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1462-6

  • Online ISBN: 978-88-470-1463-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics