Skip to main content

Calcium and Phosphorus Homeostasis: Pathophysiology

  • Chapter
Neonatology

Abstract

Ninety-eight percent of the calcium and eighty percent of the phosphorus in the body are in the skeleton; these elements are also constituents of the intracellular and extracellular spaces. The metabolic homeostasis of calcium, phosphorus, and magnesium and mineralization of the skeleton are complex functions that require the intervention of various parameters; an adequate supply of nutrients; the development of the intestinal absorption process; and the effects of several hormones, such as parathyroid hormone, vitamin D, and calcitonin, as well as optimum renal and skeletal controls [1]. Bone formation requires protein and energy for collagen matrix synthesis, and an adequate intake of calcium and phosphorus is necessary for correct mineralization. During development, nutrients are transferred mainly across the placenta. It has been calculated that during the last trimester of gestation the daily accretion per kilogram of body weight represents around 120 mg of calcium and 70 mg of phosphorus. Therefore, at birth the whole-body content of a term infant represents approximately 30 grams of calcium and 16 grams of phosphorus. After birth, the use of the gastrointestinal tract to provide nutrients for growth causes a reduction in calcium availability for bone accretion promoting the occurrence of relative osteopenia in preterm infants and to a lesser extent in term infants during the first weeks of life. In addition to their roles in bone formation, calcium and phosphorus play important roles in many physiologic processes, such as transport across membranes, activation and inhibition of enzymes, intracellular regulation of metabolic pathways, secretion and action of hormones, blood coagulation, muscle contractility, and nerve conduction. The 20% of phosphorus not complexed within bone is present mainly as adenosine triphosphate, nucleic acids, and cell and organelle membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rigo J, De Curtis M, Pieltain C et al (2000) Bone mineral metabolism in the micropremie. Clin Perinatol 27: 147–170

    Article  PubMed  CAS  Google Scholar 

  2. Rigo J, Mohamed MW, De Curtis M (2010) Disorders of calcium, phosphorus, and magnesium metabolism. In: Martin R, Fanaroff A, Walsh M (eds) Neonatal-Perinatal Medicine, 9th edn. Elsevier Mosby, Philadelphia

    Google Scholar 

  3. Hsu SC, Levine MA (2004) Perinatal calcium metabolism: physiology and pathophysiology. Sem Neonatol 9: 23–36

    Article  Google Scholar 

  4. Sato K (2008) Hypercalcemia during pregnancy, puerperium, and lactation: review and a case report of hypercalcemic crisis after delivery due to excessive production of PTH-related protein (PTHrP) without malignancy (humoral hypercalcemia of pregnancy). Endocr J 55: 959–966

    Article  PubMed  CAS  Google Scholar 

  5. Avila E, Diaz L, Barrera D et al (2006) Regulation of vitamin D hydroxylaxses gene expression by 1,25-dihydroxyvitamin D3 and cyclic AMP in cultured human syncytiotrophoblasts. J Steroid Biochem Mol Biol 103: 90–96

    Article  PubMed  Google Scholar 

  6. Novakovic B, Sibson M, Hg HK et al (2009) Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the feto- maternal interface. J Biol Chem 284: 14838–14848

    Article  PubMed  CAS  Google Scholar 

  7. Salle BL, Delvin EE, Lapillonne A et al (2000) Perinatal metabolism of vitamin D. Am J Clin Nutr 71: 1317S–1324S

    PubMed  CAS  Google Scholar 

  8. Bassir M, Laborie S, Lapillonne A et al (2001) Vitamin D defi-ciency in Iranian mothers and their neonates: A pilot study. Acta Paediatr 90: 577–579

    Article  PubMed  CAS  Google Scholar 

  9. Atkinson SA, Tsang RC (2005) Calcium, magnesium, phosphorus, and vitamin D. In: Tsang R et al (eds) Nutrition of the Preterm Infant, 2nd edn. Digital Educ Pub, Cincinnati, Ohio, p 245

    Google Scholar 

  10. Rigo J, Senterre J (2006) Nutritional needs of premature infants: current issues. J Pediatr 149: S80–S88

    Article  CAS  Google Scholar 

  11. Rigo J, Pieltain C, Salle B, Senterre J (2007) Enteral calcium, phosphate and vitamin D requirements and bone mineralization in preterm infants. Acta Paediatr 96: 969–974

    Article  PubMed  Google Scholar 

  12. Portal AA (2004) Calcium and phosphorus. In: Avner ED, Harmon WE, Niaudet P et al (eds) Pediatric Nephrology, 5th edn. Lippincott, Williams and Wilkins, Philadelphia, p 209

    Google Scholar 

  13. American Academy of Pediatric (1985) Committee on Nutrition: Nutritional needs of low birth weight infants. Pediatrics 75: 976

    Google Scholar 

  14. Klein CJ (2002) Nutrient requirements for preterm infant formulas. J Nutr 132: 1395S–1577S

    PubMed  CAS  Google Scholar 

  15. Agostoni C, Buonocore G, Carnielli VP et al (2010) Enteral nutrient supply for preterm infants. J Pediatr Gastroenterol Nutr 50: 85–91

    Article  PubMed  CAS  Google Scholar 

  16. Holtback U, Aperia AC (2003) Molecular determinants of sodium and water balance during early human development. Sem Neonatol 8: 291–299

    Article  Google Scholar 

  17. Quarles LD (2008) Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 118: 3820–3828

    Article  PubMed  CAS  Google Scholar 

  18. Rodriguez SJ (2003) Neonatal hypercalcemia. J Nephrol 16: 606–608

    Google Scholar 

  19. Pieltain C, Vervoort A, Senterre T, Rigo J (2009) Intérêt de la consommation de produits laitiers et de la supplémentation en vitamine D au cours de la croissance. J Pédiatr Belge 11: 24–27

    Google Scholar 

  20. Pawley N, Bishop NJ (2004) Prenatal and infant predictors of bone health the influence of vitamin D. Am J Clin Nutr 80 (Suppl 6): 1748S–1751S

    PubMed  CAS  Google Scholar 

  21. Greer FR (2003) Vitamin D deficiency-it’s more than rickets. J Pediatr 143: 422–423

    Article  PubMed  Google Scholar 

  22. Wagner CL, Greer FR; American Academy of Pediatrics Section on Breastfeeding; American Academy of Pediatrics Committee on Nutrition (2008) Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 122: 1142–1152

    Google Scholar 

  23. Holick MF (2007) Vitamin Deficiency. N Engl J Med 357: 266–281

    Article  PubMed  CAS  Google Scholar 

  24. Karsdal MA, Henriksen K, Arnold M, Christiansen C (2008) Calcitonin: a drug of the past or for the future? Physiologic inhibition of bone resorption while sustaining osteoclast numbers improves bone quality. BioDrugs 22: 137–144

    CAS  Google Scholar 

  25. Fudge NJ, Kovacs CS (2004) Physiological studies in heterozygous calcium sensing receptor ( CaSR) gene-ablated mice confirm that the CaSR regulates calcitonin release in vivo. BMC Physiol 20: 5

    Google Scholar 

  26. Liu S, Gupta A, Quarles LD (2007) Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Curr Opin Nephrol Hypertens 16: 329–335

    Article  PubMed  CAS  Google Scholar 

  27. Shaikh A, Berndt T, Kumar R (2008) Regulation of phosphate homeostasis by the phosphatonins and other novel mediators. Pe- diatr Nephrol 23: 1203–1210

    Article  Google Scholar 

  28. Banerjee S, Mimouni FB, Mehta R (2003) Lower whole blood ionized magnesium concentrations in hypocalcemic infants of gestational diabetic mothers. Magnes Res 16: 127–130

    PubMed  CAS  Google Scholar 

  29. Stewart AF (2004) Translational implications of the parathyroid calcium receptor. N Engl J Med 351: 324–326

    Article  PubMed  CAS  Google Scholar 

  30. Toke J, Patocs A, Balogh K (2009) Parathyroid hormone-dependent hypercalcemia. Wien Klin Wochenschr 121: 236–245

    Article  PubMed  CAS  Google Scholar 

  31. Schell-Feith EA, Kist-van Holthe JE, van der Heijden AJ (2010) Nephrocalcinosis in preterm neonates. Pediatr Nephrol 25: 221–230

    Article  PubMed  Google Scholar 

  32. Bachetta J, Harambat Jr, Dubourg L et al (2009) Both extrauerine and intrauterine growth restriction impair renal function in children born very preterm. Kidney International 76: 445–452

    Article  Google Scholar 

  33. Zazzo JF, Troche G, Ruel P Maintenant J (1995) High incidence of hypophosphatemia in surgical intensive care patients: efficacy of phosphorus therapy on myocardial function. Intensive Care Med 21: 826–831

    Article  PubMed  CAS  Google Scholar 

  34. Putet G, Rigo J, Salle B, Senterre J (1987) Supplementation of pooled human milk with casein hydrolysate: energy and nitrogen balance and weight gain composition in very low birth weight in¬fants. Pediatr Res 21: 458–461

    Article  PubMed  CAS  Google Scholar 

  35. Fuentebella J, Korner JA (2009) Refeeding syndrome. Ped Clin N Am 56: 1201–1210

    Article  Google Scholar 

  36. Caudarella R, Vescini F, Buffa A, Francucci CM (2007) Hyper- phosphatemia: effects on bone metabolism and cardiovascular risk. J Endocrinol Invest 30 (Suppl 6): 29–34

    PubMed  CAS  Google Scholar 

  37. Rauch F, Schoenau E (2001) The developing bone: Slave or master of its cells and molecules? Pediatr Res 50: 309–314

    Article  PubMed  CAS  Google Scholar 

  38. Rauch F, Schoenau E (2002) Skeletal development in premature infants: A review of bone physiology beyond nutritional aspects. Arch Dis Child Fetal Neonatal Ed 86: F82–F85

    Article  PubMed  CAS  Google Scholar 

  39. Land C, Schoenau E (2008) Fetal and postnatal bone development: reviewing the role of mechanical stimuli and nutrition. Best Pract Res Clin Endocrinol Metab 22: 107–118

    Article  PubMed  Google Scholar 

  40. Rigo J (2008) Neonatal osteopenia and bone mineralization. eNeonatal Review 6: 4

    Google Scholar 

  41. Bishop N, Sprigg A, Dalton A (2007) Unexplained fractures in infancy: looking for fragile bones. Arch Dis Child 92: 251–256

    Article  PubMed  Google Scholar 

  42. Harrison CM, Johnson K, McKechnie E (2008) Osteopenia of prematurity: a national survey and review of practice. Acta Paediatrica 97: 407–413

    Article  PubMed  CAS  Google Scholar 

  43. Schulzke SM, Trachsel D, Patole SK (2007) Physical activity programs for promoting bone mineralization and growth in preterm infants. Cochrane Database Syst Rev 18:CD005387

    Google Scholar 

  44. Avila-Díaz M, Flores-Huerta S, Martínez-Muñiz I, Amato D (2001) Increments in whole body bone mineral content associated with weight and length in pre-term and full-term infants during the first 6 months of life. Arch Med Res 32: 288–292

    Article  PubMed  Google Scholar 

  45. Zamora SA, Belli DC, Rizzoli R et al (2001) Lower femoral neck bone mineral density in prepubertal former preterm girls. Bone 29: 424–427

    Article  PubMed  CAS  Google Scholar 

  46. Fewtrell MS et al (2000) Neonatal factors predicting childhood height in preterm infants: Evidence for a persisting effect of early metabolic bone disease? J Pediatr 137: 668–673

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Rigo, J., Pieltain, C., Viellevoye, R., Bagnoli, F. (2012). Calcium and Phosphorus Homeostasis: Pathophysiology. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Milano. https://doi.org/10.1007/978-88-470-1405-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1405-3_49

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1404-6

  • Online ISBN: 978-88-470-1405-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics