Skip to main content

Abstract

Conventional radiographs are the initial radiologic study in most suspected knee disorders. Radiographs demonstrate the joint spaces as well as bones, but are relatively insensitive to soft-tissue (except those composed largely of calcium or fat), destruction of medullary bone, and early loss of cartilage. A minimum radiographic examination consists of AP and lateral projections. In patients with acute trauma, performing the lateral examination cross-table allows identification of a lipohemarthrosis, an important clue to the presence of an intraarticular fracture [1]. The addition of oblique projections increases the sensitivity of the examination for nondisplaced fractures, especially those of the tibial plateau [2]. For the early detection of articulai cartilage loss, a PA radiograph of both knees with the patient standing and knees mildly flexed is a useful adjunct projection. A joint space difference of 2 mm side-to-side correlates with grade III and higher chondrosis [3]. The tunnel projection is useful to demonstrate intercondylar osteophytes. In patients with anterior knee symptoms, an axial projection of the patellofemoral joint, such as a Merchant view, can evaluate the patellofemoral joint space and alignment [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee JH, Weissman BN, Nikpoor N et al (1989) Lipohemarthrosis of the knee: a review of recent experiences. Radiology 173:189–191

    CAS  PubMed  Google Scholar 

  2. Gray SD, Kaplan PA, Dussault RG et al (1997) Acute knee trauma: how many plain film views are necessary for the initial examination? Skeletal Radiol 26:298–302

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg TD, Paulos LE, Parker RD et al (1988) The fortyfive-degree posteroanterior flexion weight-bearing radiograph of the knee. J Bone Joint Surg [Am] 70:1479–1483

    CAS  Google Scholar 

  4. Jones AC, Ledingham J, McAlindon T et al (1993) Radiographic assessment of patellofemoral osteoarthritis. Ann Rheum Dis 52:655–658

    Article  CAS  PubMed  Google Scholar 

  5. Smith SL, Wastie ML, Forster I (2001) Radionuclide bone scintigraphy in the detection of significant complications after total knee joint replacement. Clin Radiol 56:221–224

    Article  CAS  PubMed  Google Scholar 

  6. Pelosi E, Baiocco C, Pennone M et al (2004) 99mTc-HMPAO-leukocyte scintigraphy in patients with symptomatic total hip or knee arthroplasty: improved diagnostic accuracy by means of semiquantitative evaluation. J Nucl Med 45:438–444

    PubMed  Google Scholar 

  7. Bouffard JA, Dhanju J (1998) Ultrasonography of the knee. Semin Musculoskelet Radiol 2:245–270

    Article  PubMed  Google Scholar 

  8. Khan KM, Bonar F, Desmond PM et al (1996) Patellar tendinosis (jumper’s knee): findings at histopathologic examination, US, and MR imaging. Victorian Institute of Sport Tendon Study Group. Radiology 200:821–827

    CAS  PubMed  Google Scholar 

  9. Ward EE, Jacobson JA, Fessell DP et al (2001) Sonographic detection of Baker’s cysts: comparison with MR imaging. AJR Am J Roentgenol 176:373–380

    CAS  PubMed  Google Scholar 

  10. Wicky S, Blaser PF, Blanc CH et al (2000) Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures. Eur Radiol 10:1227–1232

    Article  CAS  PubMed  Google Scholar 

  11. Buckwalter KA, Farber JM (2004) Application of multidetector CT in skeletal trauma. Semin Musculoskelet Radiol 8:147–156

    Article  PubMed  Google Scholar 

  12. Mutschier C, Vande Berg BC, Lecouvet FE et al (2003) Postoperative meniscus: assessment at dual-detector row spiral CT arthrography of the knee. Radiology 228:635–641

    Article  Google Scholar 

  13. Vande Berg BC, Lecouvet FE, Poilvache P et al (2002) Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging. Radiology 22:430–436

    Article  Google Scholar 

  14. Brossmann J, Preidler KW, Daenen B et al (1996) Imaging of osseous and cartilaginous intraarticular bodies in the knee: comparison of MR imaging and MR arthrography with CT and CT arthrography in cadavers. Radiology 200:509–517

    CAS  PubMed  Google Scholar 

  15. Sciulli RL, Boutin RD, Brown RR et al (1999) Evaluation of the postoperative meniscus of the knee: a study comparing conventional arthrography, conventional MR imaging, MR arthrography with iodinated contrast material, and MR arthrography with gadolinium-based contrast material. Skeletal Radiol 28:508–514

    Article  CAS  PubMed  Google Scholar 

  16. Magee T, Shapiro M, Rodriguez J, Williams D (2003) MR arthrography of postoperative knee: for which patients is it useful? Radiology 229:159–163

    Article  PubMed  Google Scholar 

  17. Barnett MJ (1993) MR diagnosis of internal derangements of the knee: effect of field strength on efficacy. AJR Am J Roentgenol 161:115–118

    CAS  PubMed  Google Scholar 

  18. Franklin PD, Lemon RA, Barden HS (1997) Accuracy of imaging the menisci on an in-office, dedicated, magnetic resonance imaging extremity system. Am J Sports Med 25:382–388

    Article  CAS  PubMed  Google Scholar 

  19. Rubin DA, Kneeland JB (1994) MR imaging of the musculoskeletal system: technical considerations for enhancing image quality and diagnostic yield. AJR Am J Roentgenol 163:1155–1163

    CAS  PubMed  Google Scholar 

  20. Buckwalter KA, Pennes DR (1990) Anterior cruciate ligament: oblique sagittal MR imaging. Radiology 175:276–277

    CAS  PubMed  Google Scholar 

  21. Yu JS, Salonen DC, Hodler J et al (1996) Posterolateral aspect of the knee: improved MR imaging with a coronal oblique technique. Radiology 198:199–204

    CAS  PubMed  Google Scholar 

  22. Vande Berg BC, Malghem J, Lecouvet FE et al (1998) 2 Classification and detection of bone marrow lesions with magnetic resonance imaging. Skeletal Radiol 7:529–545

    Article  Google Scholar 

  23. Bush CH (2000) The magnetic resonance imaging of musculoskeletal hemorrhage. Skeletal Radiol 29:1–9

    Article  CAS  PubMed  Google Scholar 

  24. Rubin DA, Paletta GA Jr (2000) Current concepts and controversies in meniscal imaging. Magn Reson Imaging Clin N Am 8:243–270

    CAS  PubMed  Google Scholar 

  25. Ha TPT, Li KC, Beaulieu CF et al (1998) Anterior cruciate ligament injury: fast spin-echo MR imaging with arthroscopic correlation in 217 examinations. AJR Am J Roentgenol 170:1215–1219

    CAS  PubMed  Google Scholar 

  26. Sonin AH, Pensy RA, Mulligan ME et al (2002) Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR Am J Roentgenol 179:1159–1166

    PubMed  Google Scholar 

  27. Kapelov SR, Teresi LM, Bradley WG et al (1993) Bone contusions of the knee: increased lesion detection with fast spineecho MR imaging with spectroscopic fat saturation. Radiology 189:901–904

    CAS  PubMed  Google Scholar 

  28. Weinberger E, Shaw DW, White KS et al (1995) Nontraumatic pediatric musculoskeletal MR imaging: comparison of conventional and fast-spin-echo short inversion time inversion-recovery technique Radiology 194:721–726

    CAS  PubMed  Google Scholar 

  29. Recht MP, Piraino DW, Paletta GA et al (1996) Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 198:209–212

    CAS  PubMed  Google Scholar 

  30. Disler DG, McCauley TR, Kelman CG et al (1996) Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 167:127–132

    CAS  PubMed  Google Scholar 

  31. Woertler K, Strothmann M, Tombach B et al (2000) Detection of articular cartilage lesions: experimental evaluation of lowand high-field-strength MR imaging at 0.18 and 1.0 T. J Magn Reson Imaging 11:678–685

    Article  CAS  PubMed  Google Scholar 

  32. Kladny B, Gluckert K, Swoboda B et al (1995) Comparison of low-field (0.2 Tesla) and high-field (1.5 Tesla) magnetic resonance imaging of the knee joint. Arch Orthop Trauma Surg 114:281–286

    Article  CAS  PubMed  Google Scholar 

  33. Lee JH, Weissman BN, Nikpoor N et al (1989) Lipohemarthrosis of the knee: a review of recent experiences. Radiology 173:189–191

    CAS  PubMed  Google Scholar 

  34. Wicky S, Blaser PF, Blanc CH et al (2000) Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures. Eur Radiol 10:1227–1232

    Article  CAS  PubMed  Google Scholar 

  35. Kode L, Lieberman JM, Motta AO et al (1994) Evaluation of tibial plateau fractures: efficacy of MR imaging compared with CT. AJR Am J Roentgenol 163:141–147

    CAS  PubMed  Google Scholar 

  36. Mui LW, Engelsohn E, Umans H (2007) Comparison of CT and MRI in patients with tibial plateau fracture: can CT findings predict ligament tear or meniscal injury? Skeletal Radiol 36:145–151

    Article  PubMed  Google Scholar 

  37. Yacoubian SV, Nevins RT, Sallis JG et al (2002) Impact of MRI on treatment plan and fracture classification of tibial plateau fractures. J Orthop Trauma 16(9):632–637

    Article  PubMed  Google Scholar 

  38. Campos JC, Chung CB, Lektrakul N et al (2001) Pathogenesis of the Segond fracture: anatomic and MR imaging evidence of an iliotibial trad or anterior oblique band avulsion. Radiology 219:381–386

    CAS  PubMed  Google Scholar 

  39. Huang GS, Yu JS, Munshi M et al (2003) Avulsion fracture of the head of the fibula (the “arcuate” sign): MR imaging findings predictive of injuries to the posterolateral ligaments and posterior cruciate ligament. AJR Am J Roentgenol 180:381–387

    PubMed  Google Scholar 

  40. De Smet AA, Ilahi OA, Graf BK (1996) Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skeletal Radiol 25:159–163

    Article  PubMed  Google Scholar 

  41. Kramer J, Stiglbauer R, Engel A et al (1992) MR contrast arthrography (MRA) in osteochondrosis dissecans. J Comput Assist Tomogr 16:254–260

    Article  CAS  PubMed  Google Scholar 

  42. Speer KP, Spritzer CE, Goldner JL et al (1991) Magnetic resonance imaging of traumatic knee articular cartilage injuries. Am J Sports Med 19:396–402

    Article  CAS  PubMed  Google Scholar 

  43. Rubin DA, Harner CD, Costello JM (2000) Treatable chondral injuries in the knee: frequency of associated focal subchondral edema. AJR Am J Roentgenol 174:1099–1106

    CAS  PubMed  Google Scholar 

  44. Spitz DJ, Newberg AH (2002) Imaging of stress fractures in the athlete. Radiol Clin North Am 40:313–331

    Article  PubMed  Google Scholar 

  45. Kapelov SR, Teresi LM, Bradley WG et al (1993) Bone contusions of the knee: increased lesion detection with fast spinecho MR imaging with spectroscopic fat saturation. Radiology 189:901–904

    CAS  PubMed  Google Scholar 

  46. Arndt WF 3rd, Truax AL, Barnett FM et al (1996) MR diagnosis of bone contusions of the knee: comparison of coronal T2-weighted fast spin-echo with fat saturation and fast spinecho STIR images with conventional STIR images. AJR Am J Roentgenol 166:119–124

    PubMed  Google Scholar 

  47. Zanetti M, Bruder E, Romero J, Hodler J (2000) Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 215:835–840

    CAS  PubMed  Google Scholar 

  48. Sanders TG, Medynski MA, Feller JF, Lawhorn KW (2000) Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics 20(Spec No):S135–S151

    PubMed  Google Scholar 

  49. Wright RW, Phaneuf MA, Limbird TJ, Spindler KP (2000) Clinical outcome of isolated subcortical trabecular fractures (bone bruise) detected on magnetic resonance imaging in knees. Am J Sports Med 28:663–667

    CAS  PubMed  Google Scholar 

  50. Costa-Paz M, Muscolo DL, Ayerza M et al (2001) Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy 17:445–449

    Article  CAS  PubMed  Google Scholar 

  51. Björkengren AG, AlRowaih A, Lindstrand A et al (1990) Spontaneous osteonecrosis of the knee: value of MR imaging in determining prognosis. AJR Am J Roentgenol 154:331–336

    PubMed  Google Scholar 

  52. Mitchell DG, Rao VM, Dalinka MK et al (1987) Femoral head avascular necrosis: correlation of MR imaging, radiographic staging, radionuclide imaging, and clinical findings. Radiology 162:709–715

    CAS  PubMed  Google Scholar 

  53. Deutsch AL, Mink JH, Rosenfelt FP et al (1989) Incidental detection of hematopoietic hyperplasia on routine knee MR imaging. AJR Am J Roentgenol 152:333–336

    CAS  PubMed  Google Scholar 

  54. Shellock FG, Morris E, Deutsch AL et al (1992) Hematopoietic bone marrow hyperplasia: high prevalence on MR images of the knee in asymptomatic marathon runners. AJR Am J Roentgenol 158:335–338

    CAS  PubMed  Google Scholar 

  55. Rao VM, Mitchell DG, Rifkin MD et al (1989) Marrow infarction in sickle cell anemia: correlation with marrow type and distribution by MRI. Magn Reson Imaging 7:39–44

    Article  CAS  PubMed  Google Scholar 

  56. Remedios PA, Colletti PM, Raval JK et al (1988) Magnetic resonance imaging of bone after radiation. Magn Reson Imaging 6:301–304

    Article  CAS  PubMed  Google Scholar 

  57. Lanir A, Aghai E, Simon JS et al (1986) MR imaging in myelofibrosis. J Comput Assist Tomogr 10:634–636

    Article  CAS  PubMed  Google Scholar 

  58. Hernandez RJ (1985) Visualization of small sequestra by computerized tomography. Report of 6 cases. Pediatr Radiol 15:238–241

    Article  CAS  PubMed  Google Scholar 

  59. Mason MD, Zlatkin MB, Esterhai JL et al (1989) Chronic complicated osteomyelitis of the lower extremity: evaluation with MR imaging. Radiology 173:355–359

    CAS  PubMed  Google Scholar 

  60. Capitano MA, Kirkpatrick JA (1970) Early roentgen observations in acute osteomyelitis. AJR Am J Roentgenol 108:488–490

    Google Scholar 

  61. Erdman WA, Tamburro F, Jayson HT et al (1991) Osteomyelitis: characteristics and pitfalls of diagnosis with MR imaging. Radiology 180:533–539

    CAS  PubMed  Google Scholar 

  62. Panicek DM, Gatsonis C, Rosenthal DI et al (1997) CT and MR imaging in the local staging of primary malignant musculoskeletal neoplasms: Report of the Radiology Diagnostic Oncology Group. Radiology 202:237–246

    CAS  PubMed  Google Scholar 

  63. Daffner RH, Lupetin AR, Dash N et al (1986) MRI in the detection of malignant infiltration of bone marrow. AJR Am J Roentgenol 146:353–358

    CAS  PubMed  Google Scholar 

  64. Vande Berg BC, Lecouvet FE, Poilvache P et al (2002) Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging. Radiology 222:430–436

    Article  Google Scholar 

  65. Brown TR, Quinn SF (1993) Evaluation of chondromalacia of the patellofemoral compartment with axial magnetic resonance imaging. Skeletal Radiol 22: 325–328

    Article  CAS  PubMed  Google Scholar 

  66. Disler DG, McCauley TR, Wirth CR et al (1995) Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol 165:377–382

    CAS  PubMed  Google Scholar 

  67. Gagliardi JA, Chung EM, Chandnani VP et al (1994) Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol 163:629–636

    CAS  PubMed  Google Scholar 

  68. Recht MP, Kramer J, Marcelis S et al (1993) Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology 187:473–478

    CAS  PubMed  Google Scholar 

  69. Sonin AH, Pensy RA, Mulligan ME et al (2002) Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR Am J Roentgenol 179:1159–1166

    PubMed  Google Scholar 

  70. Kramer J, Recht MP, Imhof H et al (1994) Postcontrast MR arthrography in assessment of cartilage lesions. J Comput Assist Tomogr 18:218–224

    Article  CAS  PubMed  Google Scholar 

  71. Turner DA (2000) Subchondral bone marrow edema in degenerative chondrosis [Letter]. AJR Am J Roentgenol 175:1749–1750

    CAS  PubMed  Google Scholar 

  72. Kijowski R, Stanton P, Fine J et al (2006) Subchondral bone marrow edema in patients with degeneration of the articular cartilage of the knee joint. Radiology 238(3):943–949

    Article  PubMed  Google Scholar 

  73. De Smet AA, Tuite MJ (2006) Use of the “two-slice-touch” rule for the MRI diagnosis of meniscal tears. AJR Am J Roentgenol 187:911–914

    Article  PubMed  Google Scholar 

  74. De Smet AA, Norris MA, Yandow DR et al (1993) MR diagnosis of meniscal tears of the knee: importance of high signal in the meniscus that extends to the surface. AJR Am J Roentgenol 161:101–107

    PubMed  Google Scholar 

  75. Kaplan PA, Nelson NL, Garvin KL et al (1991) MR of the knee: the significance of high signal in the meniscus that does not clearly extend to the surface. AJR Am J Roentgenol 156:333–336

    CAS  PubMed  Google Scholar 

  76. Oei EH, Nikken JJ, Verstjnen ACM et al (2003) MR imaging of the menisci and cruciate ligaments: A systematic review. Radiology 226:837–848

    Article  PubMed  Google Scholar 

  77. De Smet AA, Nathan DH, Graf BK et al (2008) Clinical and MRI findings associated with false-positive knee MR diagnoses of medial meniscal tears. AJR Am J Roentgenol 191:93–99

    Article  PubMed  Google Scholar 

  78. De Smet AA, Mukherjee R (2008) Clinical, MRI, and arthroscopic findings associated with failure to diagnose a lateral meniscal tear on knee MRI. AJR Am J Roentgenol 190:22–26

    Article  PubMed  Google Scholar 

  79. Lim PS, Schweitzer ME, Bhatia M et al (1999) Repeat tear of postoperative meniscus: potential MR imaging signs. Radiology 210:183–188

    CAS  PubMed  Google Scholar 

  80. Farley TE, Howell SM, Love KF et al (1991) Meniscal tears: MR and arthrographic findings after arthroscopic repair. Radiology 180:517–522

    CAS  PubMed  Google Scholar 

  81. Sciulli RL, Boutin RD, Brown RR et al (1999) Evaluation of the postoperative meniscus of the knee: a study comparing conventional arthrography, conventional MR imaging, MR arthrography with iodinated contrast material, and MR arthrography with gadolinium-based contrast material. Skeletal Radiol 28:508–514

    Article  CAS  PubMed  Google Scholar 

  82. Applegate GR, Flannigan BD, Tolin BS et al (1993) MR diagnosis of recurrent tears in the knee: value of intraarticular contrast material. AJR Am J Roentgenol 161:821–825

    CAS  PubMed  Google Scholar 

  83. Tung GA, Davis LM, Wiggins ME et al (1993) Tears of the anterior cruciate ligament: primary and secondary signs at MR imaging. Radiology 188:661–667

    CAS  PubMed  Google Scholar 

  84. Schweitzer ME, Tran D, Deely DM, Hume EL (1995) Medial collateral ligament injuries: evaluation of multiple signs, prevalence and location of associated bone bruises, and assessment with MR imaging. Radiology 194:825–829

    CAS  PubMed  Google Scholar 

  85. Vahey TN, Broome DR, Kayes KJ et al (1991) Acute and chronic tears of the anterior cruciate ligament: differential features at MR imaging. Radiology 181:251–253

    CAS  PubMed  Google Scholar 

  86. Brandser EA, Riley MA, Berbaum KS et al (1996) MR imaging of anterior cruciate ligament injury: independent value of primary and secondary signs. AJR Am J Roentgenol 167:121–126

    CAS  PubMed  Google Scholar 

  87. Mclntyre J, Moelleken S, Tirman P (2001) Mucoid degeneration of the anterior cruciate ligament mistaken for ligamentous tears. Skeletal Radiol 30:312–315

    Article  Google Scholar 

  88. Bergin D, Morrison WB, Carrino JA et al (2004) Anterior cruciate ligament ganglia and mucoid degeneration: coexistence and clinical correlation. AJR Am J Roentgenol 182:1283–1287

    PubMed  Google Scholar 

  89. Nguyen B, Brandser E, Rubin DA (2000) Pains, strains, and fasciculations: lower extremity muscle disorders. Magn Reson Imaging Clin N Am 8:391–408

    CAS  PubMed  Google Scholar 

  90. Khan KM, Bonar F, Desmond PM et al (1996) Patellar tendinosis (jumper’s knee): findings at histopathologic examination, US, and MR imaging. Radiology 200:821–827

    CAS  PubMed  Google Scholar 

  91. Shalaby M, Almekinders LC (1999) Patellar tendinitis: the significance of magnetic resonance imaging findings. Am J Sports Med 27:345–349

    CAS  PubMed  Google Scholar 

  92. Zeiss J, Saddemi SR, Ebraheim NA (1992) MR imaging of the quadriceps tendon: normal layered configuration and its importance in cases of tendon rupture. AJR Am J Roentgenol 159:1031–1034

    CAS  PubMed  Google Scholar 

  93. Carotti M, Salaffi F, Manganelli P et al (2002) Power Doppler sonography in the assessment of synovial tissue of the knee joint in rheumatoid arthritis: a preliminary experience. Ann Rheum Dis 61:877–882

    Article  CAS  PubMed  Google Scholar 

  94. Adam G, Dammer M, Bohndorf K et al (1991) Rheumatoid arthritis of the knee: value of gadopentetate dimeglumine-enhanced MR imaging. AJR Am J Roentgenol 156:125–129

    CAS  PubMed  Google Scholar 

  95. Crotty JM, Monu JU, Pope TL Jr (1996) Synovial osteochondromatosis. Radiol Clin North Am 34:327–342

    CAS  PubMed  Google Scholar 

  96. Lin J, Jacobson JA, Jamadar DA et al (1999) Pigmented villonodular synovitis and related lesions: the spectrum of imaging findings. AJR Am J Roentgenol 172:191–197

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Rubin, D.A., De Smet, A.A. (2009). Imaging of the Knee. In: Hodler, J., Zollikofer, C.L., Von Schulthess, G.K. (eds) Musculoskeletal Diseases 2009–2012. Springer, Milano. https://doi.org/10.1007/978-88-470-1378-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1378-0_8

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1377-3

  • Online ISBN: 978-88-470-1378-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics