Special Aspects of Musculoskeletal Imaging in Children

  • Diego Jaramillo
  • Paul K. Kleinman


In children, the skeleton undergoes multiple changes with age. These age-related transformations determine the distribution of disease, the patterns of injury, and their imaging characteristics. During development, cartilage is converted to bone and hematopoietic marrow to fatty marrow. Most epiphyses and apophyses are cartilaginous at birth and become increasingly ossified [1]. Epiphyseal cartilage has intermediate signal intensity on Tl-weighted images and low signal intensity on water-sensitive images. Epiphyseal cartilage is normally hypointense along the body’s weight-bearing regions [2]. Within the epiphyseal cartilage there is no capillary network; instead, there are multiple vascular canals which contain the veins and arteries that bring nutrients to the chondrocytes [3]. These can be visible as parallel striations on neonatal sonograms, and Doppler interrogation demonstrates flow within them [4]. Following contrast administration, magnetic resonance imaging (MRI) will show the vascular canals, which become arranged in a radial pattern as the ossification centers develop [5].


Femoral Head Septic Arthritis Magn Reson Image Slip Capital Femoral Epiphysis Osteochondritis Dissecans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rivas R, Shapiro, F (2002) Structural stages in the development of the long bones and epiphyses: A study in the New Zealand white rabbit. J Bone Joint Surg 84-A:85–100PubMedGoogle Scholar
  2. 2.
    Hopkins KL, Li KC, Bergman G (1995) Gadolinium-DTPA-enhanced magnetic resonance imaging of musculoskeletal infectious processes. Skeletal Radiol 24:325–330CrossRefPubMedGoogle Scholar
  3. 3.
    Jaramillo D, Villegas-Medina OL, Doty DK et al (2004) Agerelated vascular changes in the epiphysis, physis, and metaphysis: normal findings on gadolinium-enhanced MRI of piglets. AJR Am J Roentgenol 182:353–360PubMedGoogle Scholar
  4. 4.
    Yousefzadeh DK, Doerger K, Sullivan C (2008) The blood supply of early, late, and nonossifying cartilage: preliminary gray-scale and Doppler assessment and their implications. Pediatr Radiol 38:146–158CrossRefPubMedGoogle Scholar
  5. 5.
    Barnewolt CE, Shapiro F, Jaramillo D (1997) Normal gadolinium-enhanced MR images of the developing appendicular skeleton: Part I. Cartilaginous epiphysis and physis. AJR Am J Roentgenol 169:183–189PubMedGoogle Scholar
  6. 6.
    Ecklund K, Jaramillo D (2001) Imaging of growth disturbance in children. Radiol Clin North Am 39:823–841CrossRefPubMedGoogle Scholar
  7. 7.
    Chung T, Jaramillo D (1995) Normal maturing distal tibia and fibula: changes with age at MR imaging. Radiology 194:227–232PubMedGoogle Scholar
  8. 8.
    Shapiro F (2001) Developmental Bone Biology In: Shapiro F (ed) Pediatric orthopaedic deformities. Academic Press, San Diego, pp 21–53Google Scholar
  9. 9.
    Nimkin K, Kleinman PK, Teeger S et al (1995) Distal humeral physeal injuries in child abuse: MR imaging and ultrasonography findings. Pediatr Radiol 25:562–565CrossRefPubMedGoogle Scholar
  10. 10.
    Jaramillo D, Kämmen BF, Shapiro F (2000) Cartilaginous path of physeal fracture-separations: evaluation with MR imaging — an experimental study with histologic correlation in rabbits. Radiology 215:504–511PubMedGoogle Scholar
  11. 11.
    Laor T, Chun GF, Dardzinski BJ et al (2002) Posterior distal femoral and proximal tibial metaphyseal stripes at MR imaging in children and young adults. Radiology 224:669–674CrossRefPubMedGoogle Scholar
  12. 12.
    Shapiro F, Holtrop ME, Glimcher MJ (1977) Organization and cellular biology of the perichondrial ossification groove of Ranvier: a morphological study in rabbits. J Bone Joint Surg 59:703–723PubMedGoogle Scholar
  13. 13.
    Kleinman PK, Marks SC Jr (1995) Relationship of the subperiosteal bone collar to metaphyseal lesions in abused infants. J Bone Joint Surg 77:1471–1476PubMedGoogle Scholar
  14. 14.
    Vogler JB, 3rd, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693PubMedGoogle Scholar
  15. 15.
    Meyer JS, Siegel MJ, Farooqui SO et al (2005) Which MRI sequence of the spine best reveals bone-marrow metastases of neuroblastoma? Pediatr Radiol 35:778–785CrossRefPubMedGoogle Scholar
  16. 16.
    Ogden J (1991) The uniqueness of growing bones. In: CA Rockwood J, Wilkins K, King R (eds) Fractures in children. JB Lippincott, Philadelphia, pp 50–51Google Scholar
  17. 17.
    Laor T, Jaramillo D, Oestreich AE (1998) Musculoskeletal system. In: Kirks DR, Griscom NT (eds) Practical pediatric imaging: diagnostic radiology of infants and children. Lippincott-Raven, Philadelphia, pp 327–510Google Scholar
  18. 18.
    Kim HK, Laor T, Shire NJ et al (2008) Anterior and posterior cruciate ligaments at different patient ages: MR imaging findings. Radiology 247:826–835CrossRefPubMedGoogle Scholar
  19. 19.
    Clark CR, Ogden JA (1983) Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury J Bone Joint Surg [Am] 65:538–547Google Scholar
  20. 20.
    Major NM, Beard LN Jr, Helms CA (2003) Accuracy of MR imaging of the knee in adolescents. AJR Am J Roentgenol 180:17–19PubMedGoogle Scholar
  21. 21.
    Caffey J, Madell SH, Royer C, Morales P (1958) Ossification of the distal femoral epiphysis. J Bone Joint Surg 40-A:647–654PubMedGoogle Scholar
  22. 22.
    Nawata K, Teshima R, Morio Y, Hagino H (1999) Anomalies of ossification in the posterolateral femoral condyle: assessment by MRI. Pediatr Radiol 29:781–784CrossRefPubMedGoogle Scholar
  23. 23.
    Ogden JA, Southwick WO (1976) Osgood-Schlatter’s disease and tibial tuberosity development. Clin Orthop Rel Res 116:180–189Google Scholar
  24. 24.
    Cassas KJ, Cassettari-Wayhs A (2006) Childhood and adolescent sports-related overuse injuries. American family physician 73:1014–1022PubMedGoogle Scholar
  25. 25.
    Brown SD, Kasser JR, Zurakowski D, Jaramillo D (2004) Analysis of 51 tibial triplane fractures using CT with multiplanar reconstruction. AJR Am J Roentgenol 183:1489–1495PubMedGoogle Scholar
  26. 26.
    Blickman JG, Wilkinson RH, Graef JW (1986) The radiologic “lead band” revisited. AJR Am J Roentgenol 146:245–247PubMedGoogle Scholar
  27. 27.
    Ogden J (1990) Injury to the growth mechanisms. In: Ogden J (ed) Skeletal injury in the child. Saunders, Philadelphia, pp 97–174Google Scholar
  28. 28.
    Laor T, Jaramillo D (2009) MR imaging insights into skeletal maturation: what is normal? Radiology 250:28–38CrossRefPubMedGoogle Scholar
  29. 29.
    Poznanski AK (1978) Annual oration. Diagnostic clues in the growing ends of bone. J Can Assoc Radiol 29:7–21PubMedGoogle Scholar
  30. 30.
    Kan JH, Kleinman PK (2007) Pediatric and adolescent musculoskeletal MRI: a case based approach. Springer, Berlin Hei-delberg New YorkGoogle Scholar
  31. 31.
    Medina LS, Crone K, Kuntz KM (2001) Newborns with suspected occult spinal dysraphism: a cost-effectiveness analysis of diagnostic strategies. Pediatrics 108:E101CrossRefPubMedGoogle Scholar
  32. 32.
    Kleinman PK (2002) A regional approach to osteomyelitis of the lower extremities in children. Radiol Clin North Am 40:1033–1059CrossRefPubMedGoogle Scholar
  33. 33.
    Connolly SA, Connolly LP, Drubach LA et al (2007) MRI for detection of abscess in acute osteomyelitis of the pelvis in children. AJR Am J Roentgenol 189:867–872CrossRefPubMedGoogle Scholar
  34. 34.
    Darge K, Jaramillo D, Siegel MJ (2008) Whole-body MRI in children: current status and future applications. Eur J Radiol 68:289–298CrossRefPubMedGoogle Scholar
  35. 35.
    Samoto N, Kozuma M, Tokuhisa T, Kobayashi K (2002) Diagnosis of discoid lateral meniscus of the knee on MR imaging. Magn Reson Imaging 20:59–64CrossRefPubMedGoogle Scholar
  36. 36.
    Samoto N, Kozuma M, Tokuhisa T, Kobayashi K (2006) Diagnosis of the “large medial meniscus” of the knee on MR imaging. Magn Reson Imaging 24:1157–1165CrossRefPubMedGoogle Scholar
  37. 37.
    Oeppen RS, Jaramillo D (2003) Sports injuries in the young athlete. Top Magn Reson Imaging 14:199–208CrossRefPubMedGoogle Scholar
  38. 38.
    Laor T, Wall EJ, Vu LP (2006) Physeal widening in the knee due to stress injury in child athletes. AJR Am J Roentgenol 186:1260–1264CrossRefPubMedGoogle Scholar
  39. 39.
    Kijowski R, Blankenbaker DG, Shinki K, Fine JP, Graf BK, De Smet AA (2008) Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology 248:571–578CrossRefPubMedGoogle Scholar
  40. 40.
    Lamer S, Dorgeret S, Khairouni A et al (2002) Femoral head vascularisation in Legg-Calvé-Perthes disease: comparison of dynamic gadolinium-enhanced subtraction MRI with bone scintigraphy. Pediatr Radiol 32:580–585CrossRefPubMedGoogle Scholar
  41. 41.
    de Sanctis N, Rega AN, Rondinella F (2000) Prognostic evaluation of Legg-Calvé-Perthes disease by MRI. Part I: the role of physeal involvement. J Pediatr 20:455–462Google Scholar
  42. 42.
    de Sanctis N, Rondinella F (2000) Prognostic evaluation of Legg-Calvé-Perthes disease by MRI. Part II: pathomorphogenesis and new classification. J Pediatr Orthop 20:463–470CrossRefPubMedGoogle Scholar
  43. 43.
    Jaramillo D, Villegas-Medina OL, Doty DK et al (1996) Gadolinium-enhanced MR imaging demonstrates abductioncaused hip ischemia and its reversal in piglets. AJR Am J Roentgenol 166:879–887PubMedGoogle Scholar
  44. 44.
    Tiderius C, Jaramillo D, Connolly S et al (2009) Post-closed reduction perfusion magnetic resonance imaging as a predictor of avascular necrosis in developmental hip dysplasia: a preliminary report. J Pediatr Orthop 29:14–20PubMedGoogle Scholar
  45. 45.
    Onikul E, Fletcher BD, Parham DM, Chen G (1996) Accuracy of MR imaging for estimating intraosseous extent of osteosarcoma. AJR Am J Roentgenol 167:1211–1215PubMedGoogle Scholar
  46. 46.
    Reddick WE, Taylor JS, Fletcher BD (1999) Dynamic MR imaging (DEMRI) of microcirculation in bone sarcoma. J Magn Reson Imaging 10:277–285CrossRefPubMedGoogle Scholar
  47. 47.
    Doria AS, Kiss MH, Lotito AP et al (2001) Juvenile rheumatoid arthritis of the knee: evaluation with contrast-enhanced color Doppler ultrasound. Pediatr Radiol 31:524–531CrossRefPubMedGoogle Scholar
  48. 48.
    Doria AS, Noseworthy M, Oakden W et al (2006) Dynamic contrast-enhanced MRI quantification of synovium microcirculation in experimental arthritis. AJR Am J Roentgenol 186:1165–1171CrossRefPubMedGoogle Scholar
  49. 49.
    Waters PM, Smith GR, Jaramillo D (1998) Glenohumeral deformity secondarv to brachial plexus birth palsy. J Bone Joint Surg 80:668–677PubMedGoogle Scholar
  50. 50.
    Tomczak RJ, Guenther KP, Rieber A et al (1997) MR imaging measurement of the femoral antetorsional angle as a new technique: comparison with CT in children and adults. AJR Am J Roentgenol 168:791–794PubMedGoogle Scholar
  51. 51.
    Karol LA (1997) Rotational deformities in the lower extremities. Current Opiii Pediatr 9:77–80CrossRefGoogle Scholar
  52. 52.
    Boubaker A, Bischof Delaloye A (2008) MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imaging 52:388–402PubMedGoogle Scholar
  53. 53.
    Bleeker-Rovers CP, Vos FJ, Corstens FH, Oyen WJ (2008) Imaging of infectious diseases using [18F] fluorodeoxyglucose PET. Q J Nucl Med Mol Imaging 52:17–29PubMedGoogle Scholar
  54. 54.
    Bleeker-Rovers CP, Vos FJ, de Kleijn EM et al (2007) A prospective multi center study on fever of unknown origin: the yield of a structured diagnostic protocol. Medicine 86:26–38CrossRefPubMedGoogle Scholar
  55. 55.
    Drubach LA, Sapp MV, Laffin S et al (2008) Fluorine-18 NaF PET imaging of child abuse. Pediatr Radiol 38:776–779CrossRefPubMedGoogle Scholar
  56. 56.
    Rosendahl K, Markestad T, Lie RT (1996) Developmental dysplasia of the hip prevalence based on ultrasound diagnosis. Pediatr Radiol 26:635–639CrossRefPubMedGoogle Scholar
  57. 57.
    Terjesen T (1998) Ultrasonography for evaluation of hip dysplasia. Methods and policy in neonates, infants, and older children. Acta Orthop Scand 69:653–662CrossRefPubMedGoogle Scholar
  58. 58.
    Strouse PJ, DiPietro MA, Adler RS (1998) Pediatric hip effusions: evaluation with power Doppler sonography. Radiology 206:731–735PubMedGoogle Scholar
  59. 59.
    Kocher MS, DiCanzio J, Zurakowski D, Micheli LJ (2001) Diagnostic performance of clinical examination and selective magnetic resonance imaging in the evaluation of intraarticular knee disorders in children and adolescents. Am J Sports Med 29:292–296PubMedGoogle Scholar
  60. 60.
    Doria AS, Guarniero R, Molnar LJ et al (2000) Threedimensional (3D) contrast-enhanced power Doppler imaging in Legg-Calvé-Perthes disease. Pediatr Radiol 30:871–874CrossRefPubMedGoogle Scholar
  61. 61.
    Chapman VM, Kalra M, Halpern E et al (2005) 16-MDCT of the posttraumatic pediatric elbow: optimum parameters and associated radiation dose. AJR Am J Roentgenol 185:516–521PubMedGoogle Scholar
  62. 62.
    Gekeler J (2007) Radiology of adolescent slipped capital femoral epiphysis: measurement of epiphyseal angles and diagnosis. Operative Orthopädie und Traumatologie 19:329–344CrossRefPubMedGoogle Scholar
  63. 63.
    Eggli KD, King SH, Boal DK, Quiogue T (1994) Low-dose CT of developmental dysplasia of the hip after reduction: diagnostic accuracy and dosimetry. AJR Am J Roentgenol 163:1441–1443PubMedGoogle Scholar
  64. 64.
    Newman JS, Newberg AH (2000) Congenital tarsal coalition: multimodality evaluation with emphasis on CT and MR imaging. Radiographics 20:321–332; quiz 526–327, 532Google Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Diego Jaramillo
    • 1
  • Paul K. Kleinman
    • 2
  1. 1.Department of RadiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of RadiologyChildren’s Hospital BostonBostonUSA

Personalised recommendations