Skip to main content

Osteopatie metaboliche nelle malattie renali

  • Chapter
  • 824 Accesses

Riassunto

Le alterazioni del metabolismo minerale e del tessuto osseo rappresentano una complicazione comune nella storia naturale di numerose nefropatie, e trovano la loro espressione più tipica nei pazienti con insufficienza renale cronica in fase uremica (IRC). La comparsa di osteopatie metaboliche nei pazienti nefropatici è la conseguenza del ruolo chiave svolto dal rene nella regolazione dell’omeostasi minerale; infatti esso modula l’equilibrio esterno di calcio, fosforo e magnesio, controlla la sintesi di 1,25(OH)2D3, degrada e rimuove dal circolo l’ormone paratiroideo (PTH), contribuisce alla regolazione dell’equilibrio acido—base ed è il principale responsabile dell’escrezione di alluminio.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Klawansky S, Klawansky S, Komaroff E et al (2003) Relationship between age, renal function and bone mineral density in the US population. Osteoporos Int 14:570–576

    Article  CAS  PubMed  Google Scholar 

  2. de Deus RB, Ferreira AC, Kirsztajn GM (2003) Osteopenia in patients with glomerular diseases requiring long-term corticosteroid therapy. Nephron Clin Pract 94:69–74

    Article  Google Scholar 

  3. Zonana-Nacach A, Roseman JM, McGwin G Jr et al (2000) Damage in systemic lupus erythematosus and its association with corticosteroids. Arthritis Rheum 43:1801–1808

    Article  CAS  PubMed  Google Scholar 

  4. Valderabbano F, Jones EHP, Mallick NP (1995) Report on management of renal failure in Europe, XXIV, 1993. Nephrol Dial Transplant 10(Suppl):1–25

    Google Scholar 

  5. Caudarella R, Buffa A, Raffaella R, Vescini F (2005 ) Osteoporosi e malattie renali 5:296–301

    Google Scholar 

  6. Lemann J Jr, Adams ND, Wilz DR, Brenes LG (2000) Acid and mineral balances and bone in familial proximal renal tubular acidosis. Kidney Int 58:1267–1277

    Article  CAS  PubMed  Google Scholar 

  7. Kuemmerle N, Krieg RJ Jr, Latta K et al (1997) Growth hormone and insulin-like growth factor in non-uremic acidosis and uremic acidosis. Kidney Int 58:S102–S105

    CAS  Google Scholar 

  8. Green J, Maor G (2000) Effect of metabolic acidosis on the growth hormone/IGF-I endocrine axis in skeletal growth centers. Kidney Int 57:2258–2267

    Article  CAS  PubMed  Google Scholar 

  9. Krieger NS, Sessler NE, Busbinsky DA (1992) Acidosis inhibit osteoblastic and stimulates osteoclastic activity in vitro. Med J Physiol 262:F185–F789

    Google Scholar 

  10. Bushinsky DA (1989) Net Calcium efflux from live bone during chronic metabolic, but not respiratory, acidosis. Am J Physiol 262:F836–F842

    Google Scholar 

  11. Coe FL, Firpo JJ Jr, Hollandsworth DL et al (1975) Effect of acute and chronic metabolic acidosis on serum immunoreactive parathyroid hormone in man. Kidney Int 8:262–273

    Article  CAS  Google Scholar 

  12. Domrogkitchaiporn S, Pongsakul C (2001) Bone mineral density and histology in distal renal tubular acidosis. Kidney Int 59:1086–1093

    Article  Google Scholar 

  13. Disthabanchong S, Domrongkitchaiporn S, Sirikulchayanonta V et al (2004) Alteration of noncollagenous bone matrix proteins in distal renal tubular acidosis. Bone 35(3):604–613

    Article  CAS  PubMed  Google Scholar 

  14. Vescini F, Buffa A, La Manna G et al (2005) Long-term potassium citrate therapy and bone mineral density in idiopathic calcium stone formers. J Endocrinol Invest 28: 218–222

    CAS  PubMed  Google Scholar 

  15. Maghbooli Z, Hossein-Nezhad A, Adib HH et al (2007) Association between renal stone, bone mineral density and biochemical parameters. Iranian J Publ Health, Supplementary issue on osteoporosis, pp 45–50

    Google Scholar 

  16. Pak CYC, Britton F, Peterson R et al (1980) Ambulatory evaluation of nephrolithiasis. Classification, clinical presentation and diagnostic criteria. Am J Med 69:19–30

    Article  CAS  PubMed  Google Scholar 

  17. Caudarella R, Vescini F, Buffa A et al (2004) Osteoporosis and urolithiasis. Urol Int 72(Suppl 1): 17–19

    Article  PubMed  Google Scholar 

  18. Lemann J Jr (2002) Idiopathic hypercalciuria. In: Coe FL and Favus MJ (eds) Disorders of bone and mineral metabolism. Lippincott Williams & Wilkins, Philadelphia, pp 673–697

    Google Scholar 

  19. Caudarella R, Vescini F, Buffa A et al (2003) Bone mass loss in calcium stone disease: focus on hypercalciuria and metabolic factors. J Nephrol 16:260–266

    CAS  PubMed  Google Scholar 

  20. Jaeger P, Lippuner K, Casez JP et al (1994) Low bone mass in idiopathic renal stone formers: magnitude and significance. J Bone Miner Res 9:1525–1532

    Article  CAS  PubMed  Google Scholar 

  21. Fuss M, Gillet C, Simon J et al (1983) Bone mineral content in idiopathic renal stone disease and in primary hyperparathyroidism. Eur Urol 9(1):32–34

    CAS  PubMed  Google Scholar 

  22. Bataille P, Achard JM, Fournier A et al (1991) Diet, vitamin D and vertebral mineral density in hypercalciuric calcium stone formers. Kidney Int 39(6): 1193–1205

    Article  CAS  PubMed  Google Scholar 

  23. Pietschmann F, Bresiau NA, Pak CYC (1992) Reduced vertebral bone density in hypercalciuric nephrolithiasis. J Br Med Radiol 7:1383–1388

    CAS  Google Scholar 

  24. Trinchieri A, Nespoli R, Ostini F et al (1998) A study of dietary calcium and other nutrients in idiopathic renal calcium stone formers with low bone mineral content. J Urol 159(3):654–657

    Article  CAS  PubMed  Google Scholar 

  25. Institute of Medicine of the National Academy of Sciences (1994) Potassium. In: Dietary reference intakes for water, potassium, sodium, chloride and sulfate. National Academy Press, Washington, DC, pp 186–268

    Google Scholar 

  26. Caudarella R, Vescini F, Buffa, Stefoni S (2003) Citrate and mineral metabolism: kidney stones and bone disease. Front Biosci 8:s1084

    Article  Google Scholar 

  27. Caudarella R, Vescini F (2008) Urinary citrate and renal stone diseases: the preventive role of alkali citrate treatment. Arch Ital Urol Androl 80:1–6

    Google Scholar 

  28. Melton LJ 3rd, Atkinson EJ, O’Fallon WM et al (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8:1227–1233

    Article  PubMed  Google Scholar 

  29. Lauderdale DS, Thisted RA, Wen M, Favus MJ (2001) Bone mineral density and fracture among prevalent kidney stone cases in the Third National Health and Nutrition Examination Survey. J Bone Miner Res 16:1893–1898

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Caudarella, R., Vescini, F. (2009). Osteopatie metaboliche nelle malattie renali. In: Osteoporosi e malattie metaboliche dell’osso. Springer, Milano. https://doi.org/10.1007/978-88-470-1357-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1357-5_15

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1356-8

  • Online ISBN: 978-88-470-1357-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics