Skip to main content

Thyroid-Hormone-Regulated Cardiac Metabolism in Normal and Failing Heart

  • Chapter
Thyroid and Heart Failure
  • 973 Accesses

Abstract

Thyroid hormones regulate multiple metabolic processes in cardiomyocytes that can impact the failing heart. Recent data suggest that thyroid hormone receptors play an important role in nongenomic regulation as well as in transcription. Myocardial energy metabolism shows a balance between ATP production and utilization. Thyroid hormone regulates this balance through multiple processes. Accordingly, thyroid hormone can control the cellular environment by modifying the cellular energy state, which in turn influences processes such as transport and protein synthesis. Here we review thyroid hormone’s direct action on metabolism and ligand-dependent control through the nuclear receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinugawa K, Minobe WA, Wood WM et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103:1089–1094

    PubMed  CAS  Google Scholar 

  2. Kinugawa K, Yonekura K, Ribeiro RC et al (2001) Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res 89:591–598

    Article  PubMed  CAS  Google Scholar 

  3. Portman MA, Xiao Y, Song Y et al (1997) Expression of adenine nucleotide translocator parallels maturation of respiratory control in vivo. Am J Physiol Heart Circ Physiol 273:H1977–1983

    CAS  Google Scholar 

  4. Ochiai K, Zhang J, Gong G et al (2001) Effects of augmented delivery of pyruvate on myocardial high-energy phosphate metabolism at high workstate. Am J Physiol Heart Circ Physiol 281:H1823–1832

    PubMed  CAS  Google Scholar 

  5. Zhang J (2002) Myocardial energetics in cardiac hypertrophy. Clin Exp Pharmacol Physiol 29:351–359

    Article  PubMed  Google Scholar 

  6. Bache RJ, Zhang J, Murakami Y et al (1999) Myocardial oxygenation at high workstates in hearts with left ventricular hypertrophy. Cardiovasc Res 42:616–626

    Article  PubMed  CAS  Google Scholar 

  7. Tian R and Ingwall JS (1996) Energetic basis for reduced contractile reserve in isolated ra hearts. Am J Physiol 270:H1207–1216

    PubMed  CAS  Google Scholar 

  8. Veech RL, Lawson JWR, Cornell NW et al (1979) Cytosolic phosphorylation potential. J Biol Chem 254:6538–6547

    PubMed  CAS  Google Scholar 

  9. Ning X, Zhang J, Liu J et al (2000) Signaling and expression for mitochondrial membrane proteins during left ventricular remodeling and contractile failure after myocardial infarction. J Am Coll Cardiol 36:282–287

    Article  PubMed  CAS  Google Scholar 

  10. Sterling K (1987) Direct thyroid hormone activation of mitochondria: identification of adenine nucleotide translocase (AdNT) as the hormone receptor. Trans Assoc Am Phys 100:284–293

    PubMed  CAS  Google Scholar 

  11. Sterling K (1986) Direct thyroid hormone activation of mitochondria: the role of adenine nucleotide translocase. Endocrinology 119:292–295

    Article  PubMed  CAS  Google Scholar 

  12. Portman MA, Xiao Y, Qian K et al (2000) Thyroid hormone coordinates respiratory control maturation and adenine nucleotide translocator expression in heart in vivo. Circulation 102:1323–1329

    PubMed  CAS  Google Scholar 

  13. Portman MA, Qian K, Krueger JJ et al (2005) Direct action of T3 on phosphorylation potential in the sheep heart in vivo. Am J Physiol Heart Circ Physiol 288:2484–2490

    Article  Google Scholar 

  14. Li R, Luciakova K, Zaid A et al (1997) Thyroid hormone activates transcription from the promoter regions of some human nuclear-encoded genes of the oxidative phosphorylation system. Mol Cell Endocrinol 128:69–75

    Article  PubMed  CAS  Google Scholar 

  15. Hyyti OM, Portman MA (2006) Molecular mechanisms of cross-talk between thyroid hormone and peroxisome proliferator activated receptors: focus on the hearts. Cardiovasc Drugs Ther 20:463–469

    Article  PubMed  CAS  Google Scholar 

  16. Athea Y, Garnier A, Fortin D et al (2007) Mitochondrial and energetic cardiac phenotype in hypothyroid rat. Relevance to heart failure. Pflugers Arch 455:431–442

    Article  PubMed  CAS  Google Scholar 

  17. Heineman FW, Balaban RS (1990) Control of mitochondrial respiration in the heart in vivo. Annu Rev Physiol 52:523–542

    Article  PubMed  CAS  Google Scholar 

  18. Zhou L, Cabrera ME, Huang H et al (2007) Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs. J Physiol 579:811–821

    Article  PubMed  CAS  Google Scholar 

  19. Scholz TD, TenEyck CJ, Schutte BC (2000) Thyroid hormone regulation of the NADH shuttles in liver and cardiac mitochondria. J Mol Cell Cardiol 32:1–10

    Article  PubMed  CAS  Google Scholar 

  20. From AH, Zimmer SD, Michurski SP et al (1990) Regulation of the oxidative phosphorylation rate in the intact cell. Biochemistry 29:3731–3743

    Article  PubMed  CAS  Google Scholar 

  21. Kim DK, Heineman FW, Balaban RS (1991) Effects of b-hydroxybutyrate on oxidative metabolism and phosphorylation potential in canine heart in vivo. Am J Physiol 260 (Heart Circ Physiol 29):H1767–H1773

    PubMed  CAS  Google Scholar 

  22. Schwartz GG, Greyson C, Wisneski JA et al (1994) Inhibition of fatty acid metabolism alters myocardial high-energy phosphates in vivo. Am J Physiol 267:H224–H231

    PubMed  CAS  Google Scholar 

  23. Hyyti OM, Ning XH, Buroker NE et al (2006) Thyroid hormone controls myocardial substrate metabolism through nuclear receptor-mediated and rapid posttranscriptional mechanisms. Am J Physiol Endocrinol Metab 290:E372–E379

    Article  PubMed  CAS  Google Scholar 

  24. Krueger JJ, Ning XH, Argo BM et al (2001) Triidothyronine and epinephrine rapidly modify myocardial substrate selection: a (13)C isotopomer analysis. Am J Physiol Endocrinol Metab 281:E983–E900

    PubMed  CAS  Google Scholar 

  25. Ning XH, Chen SH, Buroker NE et al (2007) Short-cycle hypoxia in the intact heart: hypoxia-inducible factor lalpha signaling and the relationship to injury threshold. Am J Physiol Heart Circ Physiol 292:H333–H341

    Article  PubMed  CAS  Google Scholar 

  26. Hyyti OM, Olson A, Ge M et al (2008) The cardioselective dominant negative thyroid hormone receptor (D337T) modulates myocardial metabolism and contractile efficiency. Am J Physiol Endocrinol Metab 295:E420–E427

    Article  PubMed  CAS  Google Scholar 

  27. Ashrafian H, Frenneaux MP, and Opie LH (2007) Metabolic mechanisms in heart failures. Circulation 116:434–448

    Article  PubMed  CAS  Google Scholar 

  28. Laughlin MR, Taylor JF, Chesnick AS et al (1992) Regulation of glycogen metabolism in canine myocardium: effects of insulin and epinephrine in vivo. Am J Physiol 262 (Endocrinol Metab 25): E875–E873

    PubMed  CAS  Google Scholar 

  29. Drake AJ, Haines JR, and Noble MI (1980) Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res 14:65–72

    Article  PubMed  CAS  Google Scholar 

  30. Trosper TL, Philipson KD (1987) Lactate transport by cardiac sarcolemmal vesicles. Am J Physiol 252:C483–489

    PubMed  CAS  Google Scholar 

  31. Brooks GA (2002) Lactate shuttles in nature. Biochem Soc Trans 30:258–264

    Article  PubMed  CAS  Google Scholar 

  32. Lloyd S, Brocks C, Chatham JC (2003) Differential modulation of glucose lactate and pyruvate oxidation by insulin and dichloroacetate in the rat heart. Am J Physiol Heart Circ Physiol 285:Y163–H172

    Google Scholar 

  33. Hashimoto T, Hussien R, Brooks GA (2006) Co-localization of MCT1, CD147 and LDH in mitochondrial inner membrane of L6 skeletal muscle cells; evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 290:E1237–E1244

    Article  PubMed  CAS  Google Scholar 

  34. Evans RK, Schwartz DD, Gladden LB (2003) Effect of myocardial volume overload and heart failure on lactate transport into isolated cardiac myocytes. J Appl Physiol 94:1169–1176

    PubMed  Google Scholar 

  35. Wang Y, Tonouchi M, Miskovic D et al (2003) T3 increases lactate transport and the expression of MCT4, but not MCT1, in rat skeletal muscle. Am J Physiol Endocrinol Metab 285:E622–E628

    PubMed  CAS  Google Scholar 

  36. Bergh JJ, Lin HY, Lansing L et al (2005) Integrin alpha V-beta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871

    Article  PubMed  CAS  Google Scholar 

  37. Furuya F, Hanover JA, Cheng SY (2006) Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone beta receptor. Proc Natl Acad Sci USA 103:1780–1785

    Article  PubMed  CAS  Google Scholar 

  38. Cao X, Kambe F, Moeller LC et al (2005) Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol Endocrinol 19:102–112

    Article  PubMed  CAS  Google Scholar 

  39. Oudit GY, Sun H, Kerfant BG et al (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37:449–471

    Article  PubMed  CAS  Google Scholar 

  40. Kovacic S, Soltys CL, Barr AJ et al (2005) Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J Biol Chem 278:39422–39427

    Article  Google Scholar 

  41. Esaki T, Suzuki H, Cook M et al (2004) Cardiac glucose utilization in mice with mutated alpha-and beta-thyroid hormone receptors. Am J Physiol Endocrinol Metab 287:E1149–1153

    Article  PubMed  CAS  Google Scholar 

  42. Kuzman JA, Gerdes AM, Kobayashi S et al (2005) Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39:841–844

    Article  PubMed  CAS  Google Scholar 

  43. Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Aktm TOR and p70S6K pathways. J Biol Chem 281:20666–20672

    Article  PubMed  CAS  Google Scholar 

  44. Khairallah M, Khairallah R, Young ME et al (2007) Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy. J Mol Cell Cardiol 43:119–129

    Article  PubMed  CAS  Google Scholar 

  45. Gamble J, Lopaschuk GD (1997) Insulin inhibition of 5¢ adenosine monophosphate-activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism 46:1270–1274

    Article  PubMed  CAS  Google Scholar 

  46. Clark H, Carling D, Saggerson D (2004) Covalent activation of heart AMP-activated protein kinase in response to physiological concentrations of long-chain fatty acids. Eur J Biochem 271:2215–2224

    Article  PubMed  CAS  Google Scholar 

  47. Goodwin G, Taegtmeyer H (1999) Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am J Physiol 277:E772–E777

    PubMed  CAS  Google Scholar 

  48. King KL, Okere IC, Sharma N et al (2005) Regulation of cardiac malonyl-CoA content and fatty acid oxidation during increased cardiac power. Am J Physiol Heart Circ Physiol 289:H1033–H1037

    Article  PubMed  CAS  Google Scholar 

  49. Ouwens DM, Diamant M, Fodor M et al (2007) Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 50:1938–1948

    Article  PubMed  CAS  Google Scholar 

  50. Mutter T, Dolinsky VW, Ma BJ et al (2000) Thyroxine regulation of monolysocardiolipin acyltransferase activity in rat heart. Biochem J 346 (Pt 2):403–406

    Article  PubMed  CAS  Google Scholar 

  51. Paradies G, Ruggiero FM, Petrosillo G et al (1996) Stimulation of carnitine acylcarnitine translocase activity in heart mitochondria from hyperthyroid rats. FEBS Lett 397:260–262

    Article  PubMed  CAS  Google Scholar 

  52. Goldenthal MJ, Weiss HR, Marin-Garcia J (2004) Bioenergetic remodeling of heart mitochondria by thyroid hormone. Mol Cell Biochem 265:97–106

    Article  PubMed  CAS  Google Scholar 

  53. McClure TD, Young ME, Taegtmeyer H et al (2005) Thyroid hormone interacts with PPARa and PGC-1 during mitochondrial maturation in sheep heart. Am J Physiol Heart Circ Physiol 289:H2258–H2264

    Article  PubMed  CAS  Google Scholar 

  54. Araki O, Ying H, Furuya F et al (2005) Thyroid hormone receptor beta mutants: dominant negative regulators of peroxisome proliferator-activated receptor gamma action. Proc Natl Acad Sci U S A 102:16251–16256

    Article  PubMed  CAS  Google Scholar 

  55. Miyamoto T, Kaneko A, Kakizawa T et al (1997) Inhibition of peroxisome proliferator signaling pathways by thyroid hormone receptor. Competitive binding to the response element. J Biol Chem 272:7752–7758.

    Article  PubMed  CAS  Google Scholar 

  56. Dillmann WH (2002) Cellular action of thyroid hormone on the heart. Thyroid 12:447–452

    Article  PubMed  CAS  Google Scholar 

  57. Buroker NE, Young ME, Wei C et al (2007) The dominant negative thyroid hormone receptor beta-mutant D337T alters PPARa signaling in heart. Am J Physiol Endocrinol Metab 292:E453–E460

    Article  PubMed  CAS  Google Scholar 

  58. Hunter J, Kassam A, Winrow CJ et al (1996) Crosstalk between the throid hormone and peroxisome proliferator-activated receptors in regulating peroxisome proliferator-responsive genes. Mol Cell Endocrinol 116:213–221

    Article  PubMed  CAS  Google Scholar 

  59. Chu R, Madison LD, Lin Y et al (1995) Thyroid hormone (T3) inhibits ciprofibrate-induced transcription of genes encoding beta-oxidation enzymes: cross talk between peroxisome proliferator and T3 signaling pathways. Proc Natl Acad Sci U S A 92:11593–11597

    Article  PubMed  CAS  Google Scholar 

  60. Bogazzi F, Hudson LD, Nikodem VM (1994) A novel heterodimerization partner for thyroid hormone receptor. Peroxisome proliferator-activated receptor. J Biol Chem 269:11683–11686

    PubMed  CAS  Google Scholar 

  61. Scarpulla RC (2006) Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 97:673–683

    Article  PubMed  CAS  Google Scholar 

  62. Goldenthal MJ, Ananthakrishnan R, Marin-Garcia J (2005) Nuclear-mitochondrial cross-talk in cardiomyocyte T3 signaling: a time-course analysis. J Mol Cell Cardiol 39:319–326

    Article  PubMed  CAS  Google Scholar 

  63. Wrutniak C, Cassar-Malek I, Marchal S et al (1995) A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver. J Biol Chem 270:16347–16354

    Article  PubMed  CAS  Google Scholar 

  64. Casas F, Daury L, Grandemange S et al (2003) Endocrine regulation of mitochondrial activity: involvement of truncated RXR alpha and c-Erb Aalphal proteins. FASEB J 17:426–436

    Article  PubMed  CAS  Google Scholar 

  65. Casas F, Rochard P, Rodier A et al (1999) A variant form of the nuclear triiodothyronine receptor c-ErbAalphal plays a direct role in regulation of mitochondrial RNA synthesis. Mol Cell Biol 19:7913–7924

    PubMed  CAS  Google Scholar 

  66. Morrish F, Buroker NE, Ge M et al (2006) Thyroid hormone receptor isoforms localize to cardiac mitochondrial matrix with potential for binding to receptor elements on mtDNA. Mitochondrion 6:143–148

    Article  PubMed  CAS  Google Scholar 

  67. Katz D, Lazar MA (1993) Dominant negative activity of an endogenous thyroid hormone receptor variant (alpha 2) is due to competition for binding sites on target genes. J Biol Chem 268:20904–20910

    PubMed  CAS  Google Scholar 

  68. Mitsuhashi T, Tennyson GE, Nikodem VM (1988) Alternative splicing generates messages encoding rat c-erbA proteins that do not bind thyroid hormone. Proc Natl Acad Sci U S A 85:5804–5808

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Portman, M.A. (2009). Thyroid-Hormone-Regulated Cardiac Metabolism in Normal and Failing Heart. In: Iervasi, G., Pingitore, A. (eds) Thyroid and Heart Failure. Springer, Milano. https://doi.org/10.1007/978-88-470-1143-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1143-4_11

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1142-7

  • Online ISBN: 978-88-470-1143-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics