Riassunto
Il sistema nervoso centrale negli umani e in altri vertebrati deriva dalla placca neurale, una zona paramediana ispessita e allungata dello strato germinale esterno, o ectoderma (Fig. 2.1 A, E). L’ectoderma, lungo i margini laterali della placca neurale, forma bilateralmente una struttura nastriforme, la cresta neurale primitiva, che divide l’ectoderma neurale primitivo dall’ectoderma primitivo generale somatico. Con la crescita della placca neurale, i suoi margini laterali si sollevano a formare le pieghe neurali, mentre la sua regione mediana si insolca a formare la doccia neurale (Fig. 2.1 B, F). Nelle successive fasi dello sviluppo, la doccia neurale si approfonda e le pieghe neurali si avvicinano l’una all’altra sino a fondersi sulla linea mediana, dando origine al tubo neurale. Va notato che, come i lembi della doccia neurale si avvicinano, trascinano con essi l’adiacente ectoderma generale somatico primitivo e che, a processo di fusione completato, sul piano mediano si fonde non solo l’ectoderma neurale, ma anche l’ectoderma somatico.

Superfici dorsali di ricostruzioni di embrioni umani. A Stadio presomite; l’estensione approssimativa della placca neurale è segnata dalla linea tratteggiata; B Stadio dei sei primi somiti e della doccia neurale; C Embrione allo stadio di sette somiti; D Embrione allo stadio di 10 somiti. Adattato da Noback e Demarest [139]. E–H Sezioni trasverse schematiche condotte lungo l’abbozzo del SNC degli embrioni rappresentati in A–D. La linea orizzontale indica il livello a cui sono state condotte le sezioni
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
Bibliografia
Al-Ghoul WM, Miller MW (1993) Orderly migration of neurons to the principal sensory nucleus of the trigeminal nerve of the rat. J Comp Neurol 330:464–475
Altman J, Bayer SA (1987) Development of the precerebellar nuclei in the rat. I. The precerebellar neuroepithelium of the rhombencephalon. J Comp Neurol 257:477–489
Altman J, Bayer SA (1987) Development of the precerebellar nuclei in the rat. II. The intramural olivary migratory stream and the neurogenetic organization of the inferior olive. J Comp Neurol 257:490–512
Altman J, Bayer SA (1987) Development of the precerebellar nuclei in the rat. III. The posterior precerebellar extramural migratory stream and the lateral reticular and external cuneate nuclei. J Comp Neurol 257:513–528
Altman J, Bayer SA (1987) Development of the precerebellar nuclei in the rat. IV. The anterior precerebellar extramural migratory stream and the nucleus reticularis tegmenti pontis and the basal pontine gray. J Comp Neurol 257:529–552
Alvarez-Bolado G, Swanson LW (1995) Appendix: on mapping patterns in the embryonic forebrain. J Comp Neurol 355:287–295
Alvarez-Bolado G, Rosenfeld MG, Swanson LW (1995) Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birthdates, and morphological features. J Comp Neurol 355:237–295
Alvarez-Buylla A, García-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293
Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res 57:751–758
Ambrosiani J, Armengol JA, Martínez S, Puelles L (1996) The avian inferior olive derives from the alar neuroepithelium of the rhombomeres 7 and 8: an analysis by using chick-quail chimeric embryos. Neuroreport 7:1285–1288
Anderson S, Mione M, Yun K, Rubenstein JLR (1999) Differential origins of neocortical projectionand local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb Cortex 9:646–654
Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476
Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890
Bartelmez GW (1923) The subdivisions of the neural folds in man. J Comp Neurol 35:231–295
Bartelmez GW, Evans HM (1926) Development of the human embryo during the period of somite formation. Contrib Embryol Carnegie Inst 17:1–67
Bédard A, Lévesque M, Bernier PJ, Parent A (2002) The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur J Neurosci 16:1917–1924
Bengmark S, Hugosson R, Källén B (1953) Studien über Kernanlagen im Mesencephalon sowie im Rostralteil des Rhombencephalon von Mus musculus. Z Anat Entwicklungsgesch 117:73–91
Bergquist H (1954) Morphogenesis of diencephalic nuclei in homo. Kgl Fysiogr Sällsk Lund Handl N F 64:1–47
Bergquist H (1954) Ontogenesis of diencephalic nuclei in vertebrates. Kgl Fysiogr Sällsk Lund Handl N F 65:1–34
Bergquist H (1964) Die Entwicklung des Diencephalons im Lichte neuer Forschung. Progr Brain Res 5:223–229
Bergquist H, Källén B (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol 100:627–659
Bolk L (1906) Das Cerebellum der Säugetiere. Fisher, Haarlem
Boulder Committee (1969) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–262
Braitenberg V, Atwood RP (1958) Morphological observations on the cerebellar cortex. J Comp Neurol 109:1–34
Bulfone A, Puelles L, Porteus MH et al (1993) Spatially restricted expression of Dix-1, Dix-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal boundaries. J Neurosci 13:3155–3172
Cai J, Qi Y, Hu X et al (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and SAhh signaling. Neuron 45:41–53
Cajal SR (1972) Histologie du système nerveus de l’homme et des vertébrés. Consejo Superior de Investigaciones Cientificas. Instituto Ramon y Cajal, Madrid
Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545
Campbell K, Götz M (2002) Radial glia: multipurpose cells for vertebrate brain development. Trends Neurosci 25:235–238
Casarosa S, Fode C, Guillemot F (1999) Mash 1 regulates neurogenesis in the ventral telencephalon. Development 126:525–534
Choi BH (1981) Radial glia of developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study. Brain Res Dev Brain Res 1:249–267
Cobos I, Puelles L, Martínez S (2001) The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas). Dev Biol 239: 30–45
Cobos I, Shimamura K, Rubenstein JLR, Martínez S, Puelles L (2001) Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Dev Biol 239:46–67
Cooper ERA (1946) The development of the substantia nigra. Brain 69:22–33
Cordes SP (2001) Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2:611–623
De Carlos JA, López-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16: 6146–6156
Deacon TW, Pakzaban P, Isacson O (1994) The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res 668:211–219
Denaxa M, Chan CH, Schachner CH, Parnavelas JG, Karagogeos D (2001) The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128:4635–4644
Dickinson PJ, Fanarraga ML, Griffiths IR et al (1996) Oligodendrocyte progenitors in the embryonic spinal cord express DM-20. Neuropathol Appl Neurobiol 22:188–198
Eriksson PS, Perfilieva E, Bjork-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317
Essick CR (1907) The corpus ponto-bulbare — a hitherto undescribed nuclear mass in the human hindbrain. Am J Anat 7:119–135
Essick CR (1912) The development of the nuclei pontis and the nucleus arcuatus in man. Am J Anat 13:25–54
Figdor MC, Stern CD (1993) Segmental organization of the embryonic diencephalon. Nature 363: 630–634
Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435
Fujita S (1963) The matrix cell and cytogenesis in the developing central nervous system. J Comp Neurol 120:37–42
Fujita S (1966) Application of light and electron microscopic autoradiography to the study of cytogenesis of the forebrain. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 180–196
Fujita S (1969) Autoradiographic studies on histogenesis of the cerebellar cortex. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. AMA, Chicago, pp 743–748
Gadisseux J-F, Goffinet AM, Lyon G, Evrard P (1992) The human transient subpial granular layer: an optical, immunohistochemical, and ultrastructural analysis. J Comp Neurol 324:94–114
Gage FH, Kempermann G, Palmer T, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36:249–266
Gilbert MS (1935) The early development of the human diencephalon. J Comp Neurol 62:1–115
Gorski JA, Talley T, Qiu M et al (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci 22:6309–6314
Götz M, Hartfuss E, Malatesta P (2002) Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res Bull 57:777–780
Gregg C, Weiss S (2003) Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci 23:11587–11601
Gribnau AAM, Geijsberts LGM (1985) Morphogenesis of the brain in staged Rhesus monkey embryos. Adv Anat Embryol Cell Biol 91:1–69
Hamilton WJ, Boyd JD, Mossman A (1947) Human embryology. Heffer, Cambridge
Hanaway J, McConnell JA, Netsky MG (1971) Histogenesis of the substantia nigra, ventral tegmental area of tsai and interpeduncular nucleus: an autoradiographic study of the mesencephalon in the rat. J Comp Neurol 142:59–74
Hartfuss E, Galli R, Heins N, Götz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30 58.
Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539
Hatten ME, Heintz N (1995) Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci 18:385–408
Hawkes R (1997) An anatomical model of cerebellar modules. Prog Brain Res 114:39–52
Hayashi M (1924) Einige wichtige Tatsachen aus der ontogenetischen Entwicklung des menschlichen Kleinhirns. Dtsch Z Nervenheilkd 81:74–82
Hemond SG, Glover JC (1993) Clonal patterns of cell proliferation, migration, and dispersal in the brainstem of the chicken embryo. J Neurosci 13: 1387–1402
Herrick CJ (1910) The morphology of the forebrain in amphibia and reptilia. J Comp Neurol 20:413–547
Herrick CJ (1913) Anatomy of the brain. In: The reference handbook of the medical sciences, vol 2, 3rd edn. Wood, New York, pp 274–342
Hines M (1922) Studies in the growth and differentiation of the telencephalon in man. The Fissura hippocampi. J Comp Neurol 34:79–171
His W (1893) Vorschläge zur Eintheilung des Gehirns. Arch Anat Physiol Anat Abt 172–180
His W (1893) Über das frontale Ende des Gehirnrohres. Arch Anat Physiol Anat Abt 157–172
His W (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate. Hirzel, Leipzig
Hochstetter F (1919) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. Deuticke, Vienna
Hochstetter F (1929) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. II. Die Entwicklung des Mittel-und Rautenhirns. Deuticke, Vienna
Holley JA (1982) Early development of the circumferential axonal pathway in mouse and chick spinal cord. J Comp Neurol 205:371–382
Holley JA, Nornes H, Morita M (1982) Guidance of neuritic growth in the transverse plane of embryonic mouse spinal cord. J Comp Neurol 205: 360–370
Holmgren N (1925) Points of view concerning forebrain morphology in higher vertebrates. Acta Zool 6:413–477
Horton S, Meredith A, Richardson JA, Johnson JE (1999) Correct coordination of neuronal differentiation events in ventral forebrain requires the bHLH factor MASH1. Mol Cell Neurosci 14:355–369
Hugosson R (1955) Studien über die Entwicklung der longitudinalen Zellsäulen und der Anlagen der Gehirnnervenkerne in der Medulla oblongata bei verschiedenen Vertebraten. Z Anat Entwicklungsgesch 118:543–566
Hugosson R (1957) Morphologic and experimental studies on the development and significance of the rhombencephalic longitudinal cell columns. Thesis, University of Lund
Jakob A (1928) Das Kleinhirn. In: Von Möllendorff’s Handbuch der Mikroskopischen Anatomie des Menschen, IV/I, Nervensystem. Springer, Berlin
Johnston JB (1902) An attempt to define the primitive functional divisions of the central nervous system. J Comp Neurol 12:87–106
Johnston JB (1909) The morphology of the forebrain vesicle in vertebrates. J Comp Neurol 19:457–539
Kahle W (1951) Studien über die Matrixphasen und die örtlichen Reifungsunterschiede im embryonalen menschlichen Gehirn. Dtsch Z Nervenheilkd 166:272–302
Kahle W (1956) Zur Entwicklung des menschlichen Zwischenhirns. Dtsch Z Nervenheilkd 175: 259–318
Kahle W (1969) Die Entwicklung der menschlichen Grosshirnhemisphäre: Mit 55 Abbildungen. Springer, Berlin Heidelberg New York
Kahle W (1986) Nervous system and sensory organs. Thieme, New York
Källén B (1951) Embryological studies on the nuclei and their homologization in the vertebrate forebrain. Kgl Fysiogr Sällsk Lund Handl N F 62:1–36
Källén B (1951) The nuclear development in the mammalian forebrain with special regard to the subpallium. Kgl Fysiogr Sällsk Lund Handl N F 61:1–43
Kappel RM (1981) The development of the cerebellum in Macaca mulatta. Thesis, University of Leiden
Kawano H, Ohyama K, Kawamura K, Nagatsu I (1995) Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res Dev Brain Res 86:101–113
Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452
Keyser A (1972) The development of the diencephalon of the chinese hamster: an investigation of the validity of the criteria of subdivision of the brain. Acta Anat (Basel) 59:1–178
Kim J-H, Auerbach JM, Rodriguez-Gómez JA et al (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56
Knyihar-Csillik E, Csillik B, Rakic P (1995) Structure of the embryonic primate spinal cord. Anat Embryol (Berl) 191:319–540
Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 98:4752–4757
Korneliussen HK (1968) Comments on the cerebellum and its division. Brain Res 8:229–235
Korneliussen HK (1969) Cerebellar organization in the light of cerebellar nuclear morphology and cerebellar corticogenesis. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. AMA, Chicago, pp 515–523
Kostovic I (1990) Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life. Prog Brain Res 85:223–240
Kostovic I (1990) Zentralnervensystem. In: Hinrichsen KV (ed) Humane Embryologie. Springer, Berlin Heidelberg New York, pp 381–448
Koutcherov Y, Mai JK, Ashwell KWS, Paxinos G (2002) Organization of human hypothalamus in fetal development. J Comp Neurol 446:301–324
Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27:392–399
Krumlauf R, Marshall H, Studer M et al (1993) Hox Homeobox genes and regionalisation of the nervous system. J Neurobiol 24:1328–1340
Kuhlenbeck H (1954) The human diencephalon: a summary of development, structure, function and pathology. Confin Neurol 14:1–230
Lange W (1975) Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res 157:115–124
Langelaan JW (1910) Voordrachten over den bouw van het centrale zenuwstelsel. Versluys, Amsterdam
Langelaan JW (1919) On the development of the external form of the human cerebellum. Brain 42:130–170
Larsell O (1934) Morphogenesis and evolution of the cerebellum. Arch Neurol 31:373–395
Larsell O (1947) The development of the cerebellum in man in relations to its comparative anatomy. J Comp Neurol 87:85–129
Larsell O (1970) The comparative anatomy and histology of the cerebellum from monotremes through apes. University of Minneapolis Press, Minneapolis
Larsell O, Jansen J (1972) The comparative anatomy and histology of the cerebellum. III. The human cerebellum, cerebellar connections, and cerebellar cortex. University of Minneapolis Press, Minneapolis
Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888
Leber SM, Sanes JR (1995) Migratory paths of neurons and glia in the embryonic chick spinal cord. J Neurosci 15:1236–1248
Lee KJ, Jessell TM (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 22:261–294
Letinic K, Kostovic I (1997) Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol 384: 373–395
Letinic K, Rakic P (2002) Telencephalic origin of human thalamic GABAergic neurons. Nat Neurosci 4:931–936
Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649
Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193:815–840
Lim DA, Flames N, Collado L, Herrera DG (2002) Investigating the use of primary adult subventricular zone neural precursor cells for neuronal replacement therapies. Brain Res Bull 57:759–764
Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90:2074–2077
Lois C, Alvarez-Buylla A (1994) A long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148
Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189
Mai JK, Andressen C, Ashwell KWS (1998) Demarcation of prosencephalic regions by CD15-positive radial glia. Eur J Neurosci 10:746–751
Malatesta P, Hartfuss E, Götz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263
Marchand R (1987) Histogenesis of the subthalamic nucleus. Neuroscience 21:183–195
Marin F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738
Marín O, Rubenstein JLR (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790
Marín O, Rubenstein JLR (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483
Marín O, Anderson SA, Rubenstein JLR (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20:6063–6076
Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152:109–126
Marin-Padilla M (1988) Early ontogenesis of the human cerebral cortex. In: Jones EG, Peters A (eds) Development and maturation of cerebral cortex. Plenum, New York, pp 1–34 (Cerebral cortex, vol 7)
Marin-Padilla M (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitecture: a unifying theory. J Comp Neurol 321:223–240
Martínez S, Puelles L (2000) Neurogenetic compartments of the mouse diencephalon and some characteristic gene expression patterns. In: Goffinet AM, Rakic P (eds) Mouse brain development. Springer, Heidelberg, pp 91–106 (Results and problems in cell differentiation, vol 30)
Medina L, Legaz I, Gonzalez G et al (2004) Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8, and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex. J Comp Neurol 474:504–523
Misson J-P, Edwards MA, Yamamoto M, Caviness VS Jr (1988) Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. Brain Res Dev Brain Res 38:183–190
Misson J-P, Austin CP, Takahashi T, Cepko CL, Caviness VS Jr (1991) The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. Cereb Cortex 1:221–229
Mugnaini E, Forströnen PF (1967) Ultrastructural studies on the cerebellar histogenesis. I. Differentiation of granule cells and development of glomeruli in the chick embryo. Z Zellforsch 77:115–143
Müller F, O’Rahilly R (1987) The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol 176:413–430
Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432
Nadarajah B, Alifragis P, Wong R, Parnavelas JG (2002) Ventricle-directed migration in the developing cerebral cortex. Nat Neurosci 5:218–224
Nakatsu T, Uwabe C, Shiota K (2000) Neural tube closure initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol 201:455–466
Nieuwenhuys R (1998) Morphogenesis and general structure. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 1. Springer, Berlin Heidelberg New York, pp 159–228
Noback CR, Demarest RJ (1975) The human nervous system. McGraw-Hill, New York
Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720
Nordlander RH (1987) Axonal growth cones in the developing amphibian spinal cord. J Comp Neurol 263:485–496
O’Rahilly R, Gardner E (1979) The initial development of the human brain. Acta Anat (Basel) 104:123–133
O’Rahilly R, Müller F (1999) The embryonic human brain. An atlas of developmental stages, 2nd edn. Wiley, New York
O’Rahilly R, Müller F, Hutchins GM, Moore GW (1984) Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development. Am J Anat 171: 243–257
O’Rourke NA, Sullivan DP, Kaznowski CE, Jacobs AA, McConnell SK (1995) Tangential migration of neurons in the developing cerebral cortex. Development 121:2166–2176
Oberdick J, Baader SL, Schilling K (1998) From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. Trends Neurosci 21:383–390
Olivier C, Cobos I, Perez-Villegas E et al (2001) Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development 128:1757–1769
Olsson M, Björklund A, Campbell K (1998) Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 84:867–876
Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501
Ourednik V, Ourednik J, Flax JD et al (2001) Segregation of human neural stem cells in the developing primate forebrain. Science 293:1820–1824
Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494
Palmgren A (1921) Embryological and morphological studies on the midbrain and cerebellum of vertebrates. Acta Zool (Stockh) 2:1–94
Parmantier E, Braun C, Thomas J-L et al (1997) PMP-22 expression in the central nervous system of the embryonic mouse defines potential transverse segments and longitudinal columns. J Comp Neurol 378:159–172
Phelps PE, Vaughn JE (1995) Commissural fibers may guide cholinergic neuronal migration in developing rat cervical spinal cord. J Comp Neurol 355:38–50
Pleasure S, Anderson S, Hevner R et al (2000) Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28:727–740
Puelles L (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol 46:319–337
Puelles L (2001) Brain segmentation and forebrain development in amniotes. Brain Res Bull 55:695–710
Puelles L (2002) Morphogenetic deformation at the thalamotelencephalic boundary and the lamina affixa myth In: The human brain 2002. Abstracts of an IRCCS meeting, Rome, Oct 5–10, 2002, p 41
Puelles L, Medina L (1994) Development of neurons expressing tyrosine hydroxylase and dopamine in the chicken brain: a comparative segmental analysis. In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 381–404
Puelles L, Medina L (2002) Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Res 57: 243–255
Puelles L, Rubenstein JL (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16:472–479
Puelles L, Rubenstein JLR (2002) Forebrain. In: Ramachandran VS (ed) Encyclopedia of the human brain, Vol 2. Academic Press, Amsterdam, pp 299–315
Puelles L, Rubenstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 469–476
Puelles L, Verney C (1998) Early neuromeric distribution of tyrosine-hydroxylase-immunoreactive neurons in human embryos. J Comp Neurol 394:283–308
Puelles L, Domenech-Ratto G, Martinez-de-la-Torre M (1987) Location of the rostral end of the longitudinal brain axis: review of an old topic in the light of marking experiments on the closing rostral neuropore. J Morphol 194:163–171
Puelles L, Kuwana E, Puelles E et al (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438
Qi Y, Stapp D, Qiu M (2002) Origin and molecular specification of oligodendrocytes in the telencephalon. Trends Neurosci 25:223–225
Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J Comp Neurol 141:283–312
Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84
Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425–427
Rakic P (1990) Principles of neural cell migration. Experientia 46:883–891
Rakic P, Sidman RL (1969) Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entwicklungsgesch 129:53–82
Redies C, Medina L, Puelles L (2001) Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. J Comp Neurol 438:253–285
Reinoso-Suarez F (1966) Development of the human diencephalon. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 296–304
Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–351
Richter C (1966) Über die Entwicklung des Globus pallidus und des Corpus subthalamicum beim Menschen. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 285–295
Richter E (1965) Die Entwicklung des Globus Pallidus und des Corpus Subthalamicum. Springer, Berlin Heidelberg New York
Rodriguez CI, Dymecki SM (2000) Origin of the precerebellar system. Neuron 27:475–486
Romanes GJ (1941) Cell columns in the spinal cord of a human foetus of fourteen weeks. J Anat 75: 145–152
Rubenstein JLR, Beachy PA (1998) Patterning of the embryonic forebrain. Curr Opin Neurobiol 8:18–26
Rubenstein JLR, Martínez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580
Rubenstein JLR, Shimamura K, Martínez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477
Rüdeberg SI (1961) Morphogenetic studies on the cerebellar nuclei and their homologization in different vertebrates including man. Thesis, Lund
Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K (2004) Development of the posterior neural tube in human embryos. Anat Embryol 209:107–117
Sanai N, Tramontin AD, Quiñones-Hinojosa A et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744
Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl) 156:115–152
Schoenen J, Faull RLM (1990) Spinal cord: cytoarchitectural, dendroarchitectural and myeloarchitectural organization. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 19–53
Schwalbe G (1880) Beiträge zur Entwicklungsgeschichte des Zwischenhirns. Sitz Ber Jen Ges Med Naturwiss 20:2–7
Shatz CJ (1992) How are specific connections formed between thalamus and cortex? Curr Opin Neurobiol 2:79–82
Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1–35
Singer M, Nordlander RH, Egar M (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blueprint hypothesis of neuronal pathway patterning. J Comp Neurol 185:1–22
Smart IHM (1972) Proliferative characteristics of the ependymal layer during the early development of the spinal cord in the mouse. J Anat 111:365–380
Smart IHM (1972) Proliferative characteristics of the ependymal layer during the early development of the mouse diencephalon, as revealed by recording the number, location, and plane of cleavage of mitotic figures. J Anat 113:109–129
Smart IHM (1973) Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J Anat 116:67–91
Smart IHM (1976) A pilot study of cell production by the ganglionic eminences of the developing mouse brain. J Anat 121:71–84
Smart IHM, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon: II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat 134:415–442
Smart IHM, Sturrock RR (1979) Ontogeny of the neostriatum. In: Divac I, Oberg RGE (eds) The neostriatum. Pergamon, Oxford, pp 127–146
Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53
Spassky N, Goujet-Zalc C, Parmantier E et al (1998) Multiple restricted origins of oligodendrocytes. J Neurosci 18:8331–8343
Spassky N, Olivier C, Perez-Villegas E et al (2000) Single or multiple oligodendroglial lineages: a controversy. Glia 29:143–148
Streeter GL (1911) Die Entwicklung des centralen Nervensystems. In: Keibel F, Mall FP (eds) Handbuch der Entwicklungsgeschichte des Menschen, vol 2. Hirzel, Leipzig, pp 28–125
Sturrock RR (1979) A comparison of the processes of ventricular coarctation and choroid and ependymal fusion in the mouse brain. J Anat 129:235–242
Sussel L, Marin O, Kimura S, Rubenstein JLR (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126:3359–3370
Swanson JJ, Kuehl-Kovarik MC, Elmquist JK, Sakaguchi DS, Jacobson CD (1999) Development of the facial and hypoglossal motor nuclei in the neonatal Brazilian opossum brain. Dev Brain Res 112:159–172
Tamamaki N, Fujimori KE, Takauji R (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 17:8313–8323
Tan K, Le Douarin M (1991) Development of the nuclei and cell migration in the medulla oblongata: application of the quail-chick chimera system. Anat Embryol 183:321–343
Tekki-Kessaris N, Woodruff R, Hall AC et al (2001) Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128:2545–2554
Timsit S, Martinez S, Allinquant B et al (1995) Oligodendrocytes originate from a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA. J Neurosci 15:1012–1024
Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 1:116–124
Uylings HBM (2001) The human cerebral cortex in development. In: Kalverboer AF, Gramsbergen A (eds) Handbook of brain and behaviour in human development. Kluwer, Dordrecht, pp 63–80
Vallstedt A, Klos JM, Ericson J (2005) Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45:55–67
Verbitskaya LB (1969) Some aspects of the ontophylogenesis of the cerebellum. In: Llinás R (ed) Neurobiology of cerebellum evolution and development. AMA, Chicago, pp 859–879
Verney C, Zecevic N, Puelles L (2001) Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos, as revealed by cytoarchitecture and tyrosine hydroxylase, calretinin, calbindin, and GABA immunoreactions. J Comp Neurol 429:22–44
Von Baer KE (1828) Über die Entwicklungsgeschichte der Thiere. Bornträger, Königsberg
Von Kupffer C (1906) Die Morphogenie des Zentralnervensystems. In: Hertwig O (ed) Handbuch der Vergleichenden und Experimentellen Entwicklungslehre der Wirbeltiere, vol 2, part 3. Fischer, Jena, pp 1–272
Voogd J (1992) The morphology of the cerebellum the last 25 years. Eur J Morphol 30:81–96
Voogd J, Feirabend HKP, Schoen JHR (1990) Cerebellum and precerebellar nuclei. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 321–386
Voogd J, Jaarsma D, Marani E (1996) The cerebellum, chemoarchitecture and anatomy. In: Swanson LW, Björklund A, Hökfelt T (eds) Integrated systems of the CNS, part III. Cerebellum, basal ganglia, olfactory system. Elsevier, Amsterdam, pp 1–369 (Handbook of chemical neuroanatomy, vol 12)
Weissman T, Noctor SC, Clinton BK, Honig LS, Kriegstein AR (2003) Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb Cortex 13:550–559
Westergaard E (1969) The cerebral ventricles of the golden hamster during growth. Acta Anat (Basel) 72:533–548
Westergaard E (1969) The cerebral ventricles of the rat during growth. Acta Anat (Basel) 74:405–423
Westergaard E (1971) The lateral cerebral ventricles of human foetuses with a crown-rump length of 26–178. Acta Anat (Basel) 79:409–422
Wilkinson DG, Krumlauf R (1990) Molecular approaches to the segmentation of the hindbrain. Trends Neurosci 13:335–339
Wilson SW, Rubenstein JLR (2000) Induction and dorsoventral patterning of the telencephalon. Neuron 28:641–651
Windle WF (1970) Development of neural elements in human embryos of four to seven weeks gestation. Exp Neurol 28(Suppl 5):44–83
Wingate RJT (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11:82–88
Wingate RJ, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development. Development 126:4395–4404
Yamadori T (1965) Die Entwicklung des Thalamuskerns mit ihren ersten Fasersystemen bei menschlichen Embryonen. J Hirnforsch 7:393–413
Yun K, Potter S, Rubenstein JLR (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128:193–205
Zhao M, Momma S, Delfani K et al (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 100: 7925–7930
Author information
Authors and Affiliations
Copyright information
© 2010 Springer-Verlag Italia
About this chapter
Cite this chapter
Nieuwenhuys, R., Voogd, J., van Huijzen, C., Papa, M. (2010). Sviluppo. In: Il sistema nervoso centrale. Springer, Milano. https://doi.org/10.1007/978-88-470-1140-3_2
Download citation
DOI: https://doi.org/10.1007/978-88-470-1140-3_2
Publisher Name: Springer, Milano
Print ISBN: 978-88-470-1139-7
Online ISBN: 978-88-470-1140-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)