Skip to main content

Multi-physics models for bio-hybrid device simulation

  • Chapter
Book cover Mathknow

Part of the book series: MS&A ((MS&A,volume 3))

  • 1850 Accesses

Abstract

In this paper, we illustrate a set of multi-physics computational models for the simulation of bio-hybrid devices. The mathematical formulation includes electrochemical and fluid-mechanical transport of substances, chemical reactions and electrical transduction of biological signals, cell growth and cell membrane gating phenomena. The proposed models are validated in the study of realistic problems in neuroelectronics and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubinstein, I.: Electrodiffusion of Ions, SIAM, Philadelphia, PA (1990)

    Google Scholar 

  2. Jerome, J.W.: Analysis of Charge Transport. Springer-Verlag, Berlin Heidelberg (1996)

    Google Scholar 

  3. Keener, J., Sneyd, J.: Mathematical Physiology, Springer-Verlag, New York (1998)

    MATH  Google Scholar 

  4. Hille, B.: Ionic Channels of Excitable Membranes. Sinauer Associates, Inc., Sunderland, MA (2001)

    Google Scholar 

  5. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer-Verlag, New York (1998)

    Google Scholar 

  6. Neher, E.: Molecular biology meets microelectronics. Nature Biotechnology 19, 114 (2001)

    Article  Google Scholar 

  7. Hsu, C.T., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer 33(8), 1587–1597 (1990)

    Article  MATH  Google Scholar 

  8. Taur, Y., Ning, T.H.: Fundamentals of modern VLSI devices. Cambridge University Press, New York, NY, USA (1998)

    Google Scholar 

  9. Freed, L.E., Vunjak-Novakovic, G.: Tissue engineering bioreactors. In: Lanza, R.P., Langer, R., Vacanti, J. (eds.) Principles of tissue engineering. Academic Press, San Diego (2000)

    Google Scholar 

  10. Jerome, J.W.: Analytical approaches to charge transport in a moving medium. Transp. Theo. Stat. Phys. 31(4–6), 333 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Martin, I., Wendt, D., Heberer, M.: The role of bioreactors in tissue engineering. Trends Biotechnol. 22(2), 80–86 (2004)

    Article  Google Scholar 

  12. Fromherz, P.: Neuroelectronics interfacing: Semiconductor chips with ion channels, cells and brain. In: Weise, R. (ed.) Nanoelectronics and Information Technology, pp. 781–810. Wiley-VCH, Berlin (2003)

    Google Scholar 

  13. Raimondi, M.T., Boschetti, F., Migliavacca, F., Cioffi, M., Dubini, G.: Micro fluid dynamics in three-dimensional engineered cell systems in bioreactors. In: Ashammakhi, N., Reis, R.L. (eds.) Topics in Tissue Engineering, vol. 2, chap. 9 (2005)

    Google Scholar 

  14. Ho, S.T., Hutmacher, D.W.: A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27, 1362–1376 (2006)

    Article  Google Scholar 

  15. Jerome, J.W., Chini, B., Longaretti, M., Sacco, R.: Computational modeling and simulation of complex systems in bio-electronics. Journal of Computational Electronics 7(1), 10–13 (2008)

    Article  Google Scholar 

  16. Park, J.H., Jerome, J.W.: Qualitative properties of steady-state Poisson-Nernst-Planck systems: mathematical study. SIAM J. Appl. Math. 57(3), 609–630 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Barcilon, V., Chen, D., Eisenberg, R., Jerome, J.W.: Qualitative properties of steady-state Poisson-Nernst-Planck systems: perturbation and simulation study. SIAM J. Appl. Math. 57(3), 631–648 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jerome, J.W., Sacco, R.: Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial-boundary value problem. Submitted to Nonlinear Analysis (2008)

    Google Scholar 

  19. Longaretti, M., Marino, G.: Coupling of electrochemical and fluid-mechanical models for the simulation of charge flow in ionic channels. Master’s thesis, Politecnico di Milano, Milan (2006)

    Google Scholar 

  20. Longaretti, M., Marino, G., Chini, B., Jerome, J.W., Sacco, R.: Computational models in nano-bio-electronics: simulation of ionic transport in voltage operated channels. Journal of Nanoscience and Nanotechnology 8, 1–9 (2007)

    Google Scholar 

  21. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. Journal of Physiology 116, 449–472 (1952)

    Google Scholar 

  22. Brezzi, F., Marini, L.D., Micheletti, S., Pietra, P., Sacco, R.: Stability and error analysis of mixed finite volume methods for advective-diffusive problems. Comput. Math. Appl. 51, 681–696 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chung, C.A., Chen, C.W., Chen, C.P., Tseng, C.S.: Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation. Biotechnology and Bioengineering 97(6), 1603–1616 (2007)

    Article  Google Scholar 

  24. Galbusera, F., Cioffi, M., Raimondi, M.T.: An in silico bioreactor for simulating laboratory experiments in tissue engineering. Biomedical Microdevices 10(4), 547–554 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia, Milan

About this chapter

Cite this chapter

Sacco, R. (2009). Multi-physics models for bio-hybrid device simulation. In: Emmer, M., Quarteroni, A. (eds) Mathknow. MS&A, vol 3. Springer, Milano. https://doi.org/10.1007/978-88-470-1122-9_18

Download citation

Publish with us

Policies and ethics