Skip to main content

Structure-Property Relationships in Hydrogels

  • Chapter
Hydrogels

Abstract

The structure and properties of a specific hydrogel are extremely important in selecting which materials are suitable for the specific application. Knowledge of the structure-property relationship is, then, fundamental to tailor hydrogel properties to their final goal.

In this chapter, the theory describing the mechanical, both static and dynamic, and the swelling behavior of hydrogels is examined and the relationship between these properties and structural parameters is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Peppas NA, Huang Y et al (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 02:9–29

    Article  CAS  Google Scholar 

  2. Peppas NA (1986) Hydrogels in medicine and pharmacy. CRC Press, Boca Raton, Florida.

    Google Scholar 

  3. Sperling LH (1981) Interpenetrating polymer Networks. Plenum Press, New York

    Google Scholar 

  4. Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications. In: Andrade JD (ed) Hydrogels for medical and related applications. ACS symposium series, 31, ACS Washington

    Google Scholar 

  5. Park H, Park K, Shalaby Waleed SW (1993) Biodegradable Hydrogels for Drug Delivery. CRC Press, Boca Raton, Florida

    Google Scholar 

  6. Borzacchiello A, Ambrosio L, Netti PA, Nicolais L (2004 ) Rheology of biological fluids and their substitute. In: Yaszemski MJ, Trantolo DJ, Lewandroski KU, Hasirci V, Altobelli DE, Wise DL (ed), Tissue Engineering and Novel Drug Delivery Systems. Marcel Dekker Inc, New York

    Google Scholar 

  7. Ross-Murphy SB (1991) Physical gelation of synthetic and biological macromolecules. In: De Rossi D, Kajiwara K, Osada Y and Yamauchi A (ed) Polymer Gels. Fundamentals and Biomedical Applications. Plenum Press, New York

    Google Scholar 

  8. Clark AH, Ross-Murphy SB (1987) Structural and mechanical properties of biopolymers gels. Adv Pol Sc 83:61

    Google Scholar 

  9. Brannon-Peppas L (1994) Preparation and characterization of cross-linked hydrophilic networks. In: Superabsorbent Polymers: Science and Technology ACS Symp. Ser. 573, American Chemical Society, Washington, DC

    Google Scholar 

  10. Peppas NA, Mikos AG (1986) Preparation methods and structure of hydrogels. In: Peppas NA (ed) Hydrogels in Medicine and Pharmacy, Vols 1,2. CRC press Boca Raton, Florida

    Google Scholar 

  11. Peppas NA, Barr-Howell BD (1986) Characterization of the cross-linked structure of hydrogels. In: Peppas NA (ed) Hydrogels in Medicine and Pharmacy, Vols 1,2. CRC press Boca Raton, Florida

    Google Scholar 

  12. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 02:9–29

    Article  CAS  Google Scholar 

  13. Anseth KS et al. (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657

    Article  CAS  Google Scholar 

  14. Ferry JD (1970) Viscoelastic Properties of Polymers. Wiley, New York

    Google Scholar 

  15. Ambrosio L, Borzacchiello A, Netti PA, Nicolais L (1998) Rheological properties of hyaluronic acid based solutions. Polymeric Materials Science and Engineering 79: 244–245

    CAS  Google Scholar 

  16. Ambrosio L, Borzacchiello A., Netti PA, Nicolais L (1999) Rheological study on Hyaluronic acid and its derivatives solutions. J. of Macromolecular Science-Pure and Applied Chemistry A36(7 and 8):991–1000

    CAS  Google Scholar 

  17. Borzacchiello A, Netti PA, Ambrosio L, Nicolais L (2000) Hyaluronic acid derivatives mimic the rheological properties of vitreous body. In: Abatangelo G, Weigel PH (ed) New Frontiers in Medical Sciences: Redefining Hyaluronan. Elsevier, Amsterdam, pp 195–202

    Google Scholar 

  18. Borzacchiello A, Ambrosio L (2001) Network formation of low molecular weight hyaluronic acid derivatives. Journal of Biomaterials Science Polymer Edition 12(3):307–316

    Article  CAS  Google Scholar 

  19. Maltese A, Bucolo C, Maugeri F, Borzacchiello A, Mayol L, Nicolais L, Ambrosio L (2006) Novel polysaccharides based viscoelastic formulations for ophthalmic surgery: rheological characterization. Biomaterials 27:5134–5142

    Article  CAS  Google Scholar 

  20. Barbucci R, Ruoppoli R, Borzacchiello A, Ambrosio L (2000) Synthesis, chemical and rheological characterisation of new hyaluronic based hydrogels. Journal of Biomaterials Science Polymer Edition 11(4):383–399

    Article  CAS  Google Scholar 

  21. Borzacchiello A, Ambrosio L, Netti PA, Nicolais L, Peniche C, Gallardo A, San Roman J (2001) Chitosan-based hydrogels: Synthesis and Characterization. J. of Materials Science: Materials in Medicine 12:861–864

    Article  CAS  Google Scholar 

  22. Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R (2002) Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 23(13): 4503–4513

    Article  CAS  Google Scholar 

  23. Leone G, Barbucci R, Borzacchiello A, Ambrosio L, Netti PA, Migliaresi C (2004) Preparation and physico-chemical characterisation of microporous polysaccharide hydrogels. J Mater Sci Mater in Med 15(4):463–467

    Article  CAS  Google Scholar 

  24. Borzacchiello A, Mayol L, Ramires PA, Di Bartolo C, Pastorello A, Ambrosio L, Milella E (2007) Structural and rheological characterization of hyaluronic acid-based scaffolds for adipose tissue engineering. Biomaterials 28:4399–4408

    Article  CAS  Google Scholar 

  25. D’Errico G, De Lellis M, Mangiapia G, Ortona O, Fusco S, Borzacchiello A, Ambrosio L (2008) Structural and mechanical properties of UV photocrosslinked poly(N-vinyl-2-pyrrolidone) hydrogels. Biomacromolecules 9(1): 231–240

    Article  Google Scholar 

  26. Xuejun Xin, Borzacchiello A, Netti PA, Ambrosio L, Nicolais L (2004) Hyaluronic Acid Based Semi Interpenetrating Materials. J Biomater Sci Polymer Edn 15:1223–1236

    Article  Google Scholar 

  27. Battista S, Guarnieri D, Borselli C, Zeppetelli S, Borzacchiello A, Mayol L, Gerbasio D, Keene DR, Ambrosio L, Netti PA (2005) The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 26(31):6194–6207

    Article  CAS  Google Scholar 

  28. Guarnirei D, Battista S, Borzacchiello A, Mayol L, De Rosa E, Kene DR, Muscariello L, Barbarisi A, Netti PA (2007) Effect of fibronectin and laminin on structural, mechanical and transoprt properties of 3D collageneous network. Journal of Materials Science: Materials in Medicine 18(2): 245–253

    Article  Google Scholar 

  29. Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides Theory and applications. Blackie Academic and Professional, London

    Google Scholar 

  30. Aklonis JJ, Mac Knight WJ (1983) Introduction to polymer viscoelasticity. Wiley, New York

    Google Scholar 

  31. Ward IM, Hadley PW (1993) An introduction to the mechanical properties of solid polymers. Wiley, New York

    Google Scholar 

  32. Sperling LH ( 1986) Introduction to physical polymer science. Wiley, New York

    Google Scholar 

  33. De Smedt SC, Dekeyser P, Ribitsch V, Lauwers A, Demeester (1993) Viscoelastic and transient network properties of hyaluronic acid as a function of the concentration. Biorheology 30:631

    Google Scholar 

  34. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, New York

    Google Scholar 

  35. Schurz J (1991) Rheology of polymer solutions of the network type. Prog Polym Sci 16:1–53

    Article  CAS  Google Scholar 

  36. Flory PJ, Rehner BD. (1943). Statistical mechanics of cross-linked polymer networks. J Chem Phys 11:521–526

    Article  CAS  Google Scholar 

  37. Peppas NA, Merrill EW (1976). PVA hydrogels: reinforcement of radiation-crosslinked networks by crystallization. J Polym Sci Polym Chem 14:441–457

    CAS  Google Scholar 

  38. Ricka J, Tanaka T (1984) Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecules 17:2916–2921

    Article  CAS  Google Scholar 

  39. Tanaka T (1979) Phase transition in gels and a single polymer. Polymer 20:1404–1412

    Article  CAS  Google Scholar 

  40. Brannon-Peppas L, Peppas NA (1990) The equilibrium swelling behavior of porous and non-porous hydrogels. In: Brannon-Peppas L, Harland RS (ed) Absorbent polymer technology. Elsevier, Amsterdam

    Google Scholar 

  41. Canal T, Peppas NA (1989) Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J Biomed. Mater Res 23:1183–1193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia, Milan

About this chapter

Cite this chapter

Borzacchiello, A., Ambrosio, L. (2009). Structure-Property Relationships in Hydrogels. In: Hydrogels. Springer, Milano. https://doi.org/10.1007/978-88-470-1104-5_2

Download citation

Publish with us

Policies and ethics