Skip to main content

Stimuli-Sensitive Composite Microgels

  • Chapter
Hydrogels
  • 2573 Accesses

Abstract

Poly(N-isopropylacrylamide) (PNIPAM) microgels were prepared by precipitation polymerization and PNIPAM shell / hard core particles were obtained by soap-free emulsion copolymerization or seeded polymerization. Hairy particles were prepared by “grafting-to” modification or “grafting-from” living radical polymerization. They exhibited not only volume phase transition but also changes in some physical properties in a certain temperature range. Composite thermosensitive microgels including magnetite, Au, or titania were obtained by in situ formation of metal or metal oxide in polymeric particles. The functions of metal or metal oxide were tuned by reversible volume phase transition of the microgel as a function of temperature. Enzyme-carrying thermosensitive microgels exhibited unique temperature-dependence of enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schild HG (1992) Poly(N-isopropylacrylamide): Experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  2. Heskins M, Guillet JE, James E (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem A2:1441–1455

    Article  Google Scholar 

  3. Ito S (1987) Thermally reversible hydrophilic-hydrophobic polymer. Kobunshi Ronbunshu 46:437–441

    Google Scholar 

  4. Pelton RH, Chibante P (1986) Preparation of aqueous latexes with N-isopropylacrylamide. Colloids Surfaces 20:247–256

    Article  CAS  Google Scholar 

  5. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–18

    Article  CAS  Google Scholar 

  6. Jones CD, Lyon LA (2003) Shell-Restricted Swelling and Core Compression in Poly(Nisopropylacrylamide) Core-Shell Microgels. Macromolecules 36:1988–1993

    Article  CAS  Google Scholar 

  7. Jones CD, McGrath JG, Lyon LA (2004) Characterization of Cyanine Dye-Labeled Poly(N-isopropylacrylamide) Core/Shell Microgels Using Fluorescence Resonance Energy Transfer. J Phys Chem B 108:12652–12657

    Article  CAS  Google Scholar 

  8. Suzuki D, Kawaguchi H (2006) Stimuli-sensitive core/shell template particles for immobilizing inorganic nanoparticles in the core. Colloid Polym Sci 284:1443–1451

    Article  CAS  Google Scholar 

  9. Sato T, Tsuji S, Kawaguchi H (2008) Preparation of functional nanoparticles by assembling block copolymers formed by living radical polymerization. Ind Eng Chem Res 47:6358–6361

    Article  CAS  Google Scholar 

  10. Matsuoka H, Fujimoto K, Kawaguchi H (1998) Monodisperse microspheres exhibiting discontinuous response to temperature change. Polym Gels Networks 6: 319–332

    Article  CAS  Google Scholar 

  11. Tsuji S, Kawaguchi H (2005) Colored thin films prepared from hydrogel microspheres. Langmuir 21:8439–8442

    Article  CAS  Google Scholar 

  12. Goto A, Sato K, Tsujii Y, Fukuda T, Moad G, Rizzardo E, Thang SH (2001) Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules 34:402–408

    Article  CAS  Google Scholar 

  13. Tsuji S, Kawaguchi H (2006) Effect of graft length and structure design on temperature-sensitive hairy particles. Macromolecules 39:4338–4344

    Article  CAS  Google Scholar 

  14. Fujimoto K, Nakajima Y, Kashiwabara M, Kawaguchi H (1993) Fluorescence analysis for thermo-sensitive hydrogel microspheres. Polym Intl 30:237–241

    Article  Google Scholar 

  15. Ohshima H, Makino K, Kato K, Kondo T, Kawaguchi H (1993) Electrophoretic mobility of latex particles covered with temperature-sensitive hydrogel layers. J Colloid Interface Sci 159:512–514

    Article  CAS  Google Scholar 

  16. Hoshino F, Fujimoto T, Kawaguchi H, Ohtsuka Y (1987) N-substituted acrylamide-styrene copolymer lattices II. Polymerization behavior and thermosensitive stability of lattices. Polym J 19:241–247

    Article  CAS  Google Scholar 

  17. Tsuji S, Kawaguchi H (2004) Hairy particles settled on asubstrate keeping constant interparticle distance. Langmuir 20, 2449–2455

    Article  CAS  Google Scholar 

  18. Tsuji S, Kawaguchi H (2005) Self-assembly of poly(N-isopropylacrylamide)-carrying microspheres into two-dimensional colloidal arrays. Langmuir 21:2434–2437

    Article  CAS  Google Scholar 

  19. Yasui M, Shiroya T, Fujimoto K, Kawaguchi H (1997) Activity of enzymes immobilized on microspheres with thermosensitive hairs. Colloid Surfaces 8:311–319

    Article  CAS  Google Scholar 

  20. Ramirez LP, Landfester K (2003) Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol Chem Phys 204: 22–31

    Article  CAS  Google Scholar 

  21. Yamagata M, Abe M, Handa H, Kawaguchi H (2006) Magnetite/polymer composite particles prepared by molecular assembling followed by in-situ magnetite formation. Macromol Symp 245/246:363–370

    Article  CAS  Google Scholar 

  22. Kondo A; Kamura H. Higashitani K (1994) Development and application of thermo-sensitive magnetic immunomicrospheres for antibody purification. Appl Microbiol Biotech 41:99–105

    Article  CAS  Google Scholar 

  23. Suzuki D, Kawaguchi H (2005) Modification of gold nanoparticle composite nanostructures using thermosensitive core-shell particles as a template. Langmuir 21: 8175–8179

    Article  CAS  Google Scholar 

  24. Suzuki D, Kawaguchi H (2006) Hybrid microgels with reversibly changeable multiple brilliant color. Langmuir 22:3816–3822

    Google Scholar 

  25. Kawaguchi H, Suzuki D, Kaneshima D (2008) Syntheses and applications of polymeric microspheres containing inorganic nanospheres. Trans Mat Soc Jpn 33:205–208

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia, Milan

About this chapter

Cite this chapter

Kawaguchi, H. (2009). Stimuli-Sensitive Composite Microgels. In: Hydrogels. Springer, Milano. https://doi.org/10.1007/978-88-470-1104-5_12

Download citation

Publish with us

Policies and ethics