Skip to main content

Physics of Slow Bloch Modes and Their Applications

  • Chapter
Photonic Crystals: Physics and Technology

Abstract

The unique confinement properties of photonic crystals allow for the storage of photons in confined space (in the wavelength range), for a long time (compared to the period of oscillation). Different confinement schemes can apply for the production of a variety of very compact, spectrally as well as spatially resolved, microphotonic devices, depending upon the regime of operation of the photonic crystal microstructures (photonic band-gap regime, slow Bloch mode regime around an extreme of the dispersion characteristics, or a combination of both). This chapter focuses on two dimensional photonic crystals and on their exploitation along the slow Bloch mode regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yablonovitch E., Phys. Rev. Lett., 63, 2059 (1987).

    Article  ADS  Google Scholar 

  2. Gérard J.-M. and Gayral B., IEEE Journal of Lightwave Technology, 17, 2089 (1999).

    Article  Google Scholar 

  3. Letartre X., Mouette J., Seassal C., Rojo-Romeo P., Leclercq J.-L. and Viktorovitch P., Journal of Lightwave Technology, 21, 1691 (2003).

    Article  ADS  Google Scholar 

  4. John S., Phys. Rev. Lett., 58, 2486 (1987).

    Article  ADS  Google Scholar 

  5. Monat C., Seassal C., Letartre X., Viktorovitch P., Regreny P., Gendry M., Rojo-Romeo P., Hollinger G., Jalaguier E., Pocas S. and Aspar B., Electron. Lett., 37, 764 (2001).

    Article  Google Scholar 

  6. Astratov V.N., Whittaker D.M., Culshaw L.S., Stevenson R.M., Skolnick M.S., Krauss T.F. and De La Rue R.M., Phys. Rev. B, 60(24), R16255, (1999).

    Article  ADS  Google Scholar 

  7. Boutami S., Ben Bakir B., Leclercq J.-L., Letartre X., Rojo-Romeo P., Garrigues M. and Viktorovitch P., Sagnes I., Legratiet L., and Strassner M., Photonic Technology Letters, 18, 835 (2006).

    Article  ADS  Google Scholar 

  8. Mouette J., Seassal C., Letartre X., Rojo-Rome P., Leclercq J.L., Regreny P., Viktorovitch P., Jalaguier E., Perreau P. and Moriceau H., Electron. Lett., 39, 526 (2003).

    Article  Google Scholar 

  9. Cojocaru C., Raineri F., Monnier P., Seassal C., Letartre X., Viktorovitch P., Levenson A. and Raj R., Appl. Phys. Lett., 85, 1880 (2004).

    Article  ADS  Google Scholar 

  10. Raineri F., Vecchi G., Yacomotti A.M., Seassal C., Viktorovitch P., Raj R. and Levenson A., Appl. Phys. Lett., 86, 011116 (2005).

    Article  ADS  Google Scholar 

  11. Raineri F., Cojocaru C., Raj R., Monnier P., Levenson A., Seassal C., Letartre X. and Viktorovitch P., Optics Letters, 30, 64 (2005).

    Article  ADS  Google Scholar 

  12. Raineri F., Vecchi G., Cojocaru C., Yacomotti A. M., Seassal C., Letartre X., Viktorovitch P., Raj R. and Levenson A., Appl. Phys. Letters, 86, 091111 (2005).

    Article  ADS  Google Scholar 

  13. Ben Bakir B., Seassal C., Letartre X., Regreny P., Gendry M., Viktorovitch P., Zussy M., Di Cioccio L. and Fedeli J.-M., Optics Express, 14, 9269 (2006).

    Article  ADS  Google Scholar 

  14. Ben Bakir B., Seassal C., Letartre X., Viktorovitch P., Zussy M., Di Cioccio L. and Fedeli J.-M., Appl. Phys. Lett., 88, 081113, 2006 and Virtual Journal on Nanoscale Science & Technology, 13, no. 10, (2006).

    Article  ADS  Google Scholar 

  15. Yacomotti A.M., Raineri F., Vecchi G., Raj R., Levenson A., Ben Bakir B., Seassal C., Letartre X., Viktorovitch P., Di Cioccio L. and Fedeli J.-M., Appl. Phys. Lett., 88, 231107 (2006).

    Article  ADS  Google Scholar 

  16. Boutami S., Ben Bakir B., Leclercq J.-L., Letartre X., Rojo-Romeo P., Garrigues M., Viktorovitch P., Sagnes I., Legratiet L. and Strassner M., Optics Express, 14, 3129 (2006).

    Article  ADS  Google Scholar 

  17. Boutami S., Ben Bakir B., Regreny P., Leclercq J.-L. and Viktorovitch P., Electronics Letters, 43, 282 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this chapter

Cite this chapter

Viktorovitch, P. (2008). Physics of Slow Bloch Modes and Their Applications. In: Sibilia, C., Benson, T.M., Marciniak, M., Szoplik, T. (eds) Photonic Crystals: Physics and Technology. Springer, Milano. https://doi.org/10.1007/978-88-470-0844-1_3

Download citation

Publish with us

Policies and ethics