Skip to main content

New Aspects of Basic Cardiopulmonary Resuscitation Research: From Clinically Relevant Animal Models to Cells

  • Conference paper
Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E.
  • 936 Accesses

Abstract

Cardiac arrest is a dramatic event that can occur suddenly and often without premonitory signs. This condition is characterized by sudden loss of consciousness due to the lack of cerebral blood flow, which occurs when the heart ceases to pump. This phenomenon is potentially reversible if cardiopulmonary resuscitation (CPR) procedures are started early, but it becomes irreversible without interventions or delayed initiation of CPR [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gullo A (2002) Cardiac arrest, chain of survival and Utstein style. Eur J Anaesthesiol 19:624–633

    Article  PubMed  CAS  Google Scholar 

  2. International Liaison Committee on Resuscitation (2005) Part 2: Adult basic life support. Resuscitation 67:187–201

    Article  Google Scholar 

  3. Sanders AB, Ewy GA (2005) Cardiopulmonary resuscitation in real world: when will the guidelines get the message? JAMA 293:363–365

    Article  PubMed  CAS  Google Scholar 

  4. Nichol G, Stiell IG, Laupacis A et al (1999) A cumulative meta-analysis of the effectiveness of defibrillator-capable emergency medical services for victims of out-of-hospital cardiac arrest. Ann Emerg Med 34:517–525

    Article  PubMed  CAS  Google Scholar 

  5. Engdahl J, Bang A, Lindqvist J et al (2003) Time trends in long-term mortality after out-of-hospital cardiac arrest, 1980 to 1998, and predictors for death. Am Heart J 145:749–750

    Article  Google Scholar 

  6. Eisenberg MS, Horwood BT, Cummins RO et al (1990) Cardiac arrest and resuscitation: a tale of 29 cities. Ann Emerg Med 19:179–186

    Article  PubMed  CAS  Google Scholar 

  7. Becker LB, Ostrander MP, Barrett J et al (1991) Outcome of cardiopulmonary resuscitation in a large metropolitan area: where are the survivors? Ann Emerg Med 20:355–361

    Article  PubMed  CAS  Google Scholar 

  8. Caffrey SL, Willoughby PJ, Pepe PE et al (2002) Public use of automated external defibrillators. N Engl J Med 347:1242–1247

    Article  PubMed  Google Scholar 

  9. Podrid PJ, Myerburg RJ (2005) Epidemiology and stratification of risk for sudden cardiac death. Clin Cardiol 28(11 Suppl 1):I 3–I 11

    Google Scholar 

  10. Reichenbach DD, Moss NS, Meyer E (1997) Pathology of the heart in sudden cardiac death. Am J Cardiol 39:865–872

    Article  Google Scholar 

  11. Hughes GC, Post MJ, Simons M et al (2003) Translational physiology: porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. J Appl Physiol 94:1689–1701

    PubMed  Google Scholar 

  12. Ouyang P, Brinker JA, Bulkley BH et al (1981) Ischemic ventricular fibrillation: the importance of being spontaneous. Am J Cardiol 48:455–459

    Article  PubMed  CAS  Google Scholar 

  13. Qin H, Walcott GP, Killingsworth CR et al (2002) Impact of myocardial ischemia and reperfusion on ventricular defibrillation patterns, energy requirements, and detection of recovery. Circulation 105:2537–2542

    Article  PubMed  Google Scholar 

  14. Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemie bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    PubMed  CAS  Google Scholar 

  15. Gheeraert PJ, Henriques JP, De Buyzere ML et al (2000) Out-of-hospital ventricular fibrillation in patients with acute myocardial infarction: coronary angiographie determinants. J Am Coll Cardiol 35:144–150

    Article  PubMed  CAS  Google Scholar 

  16. Fang X, Tang W, Sun S et al (2006) Cardiopulmonary Resuscitation in a Rat Model of Chronic Myocardial Ischemia. J Appl Physiol 101:1091–1096

    Article  PubMed  Google Scholar 

  17. Fang X, Tang W, Sun S et al (2006) Outcomes of CPR in a Rat Model of Chronic Ischemic Heart Failure. Circulation 114(18 Suppl):II Abstract

    Google Scholar 

  18. Hearse DJ (2000) Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 45:213–219

    Article  PubMed  CAS  Google Scholar 

  19. Maxwell MP, Hearse DJ, Yellon DM (1987) Is there a component of coronary collateral flow which cannot be detected by radiolabelled microspheres? Cardiovasc Res 21:747–754

    PubMed  CAS  Google Scholar 

  20. Schaper W, Jageneau A, Xhonneux R (1967) The development of collateral circulation in the pig and dog heart. Cardiologia 51:321–335

    PubMed  CAS  Google Scholar 

  21. Swindle MM, Horneffer PJ, Gardner TJ et al (1986) Anatomic and anesthetic considerations in experimental and cardiopulmonary surgery in swine. Lab Anim Sci 36:357–361

    PubMed  CAS  Google Scholar 

  22. Sato K, Laham RJ, Pearlman JD et al (2000) Efficacy of intracoronary versus intravenous FGF-2 in a pig model of chronic myocardial ischemia. Ann Thorac Surg 70:2113–2118

    Article  PubMed  CAS  Google Scholar 

  23. Fuchs S, Baffour R, Zhou YF et al (2001) Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 37:1726–1732

    Article  PubMed  CAS  Google Scholar 

  24. Anastasiou-Nana MI, Tsagalou EP, Charitos C et al (2005) Effects of transient myocardial ischemia on the ventricular defibrillation threshold. Pacing Clin Electrophysiol 28:97–101

    Article  PubMed  Google Scholar 

  25. Janse MJ, Kleber AG (1981) Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ Res 49:1069–1081

    PubMed  CAS  Google Scholar 

  26. Spach MS, Josephson ME (1994) Initiating reentry: the role of nonuniform anisotropy in small circuits. J Cardiovasc Electrophysiol 5:182–209

    Article  PubMed  CAS  Google Scholar 

  27. Janse MJ, Wit AL (1989) Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 69:1049–1169

    PubMed  CAS  Google Scholar 

  28. Durrer D, van Dam RT, Freud GE et al (1971) Re-entry and ventricular arrhythmias in local ischemia and infarction of the intact dog heart. Proc K Ned Akad Wet C 74:321–334

    PubMed  CAS  Google Scholar 

  29. Scherlag BJ, el-Sherif N, Hope R et al (1974) Characterization and localization of ventricular arrhythmias resulting from myocardial ischemia and infarction. Circ Res 35:372–383

    PubMed  CAS  Google Scholar 

  30. Janse MJ, van Capelle FJ, Morsink H et al (1980) Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ Res 47:151–165

    PubMed  CAS  Google Scholar 

  31. Niemann JT, Rosborough JP, Walker RG (2004) A model of ischemically induced ventricular fibrillation for comparison of fixed-dose and escalating-dose defibrillation strategies. Acad Emerg Med 11:619–624

    PubMed  Google Scholar 

  32. Daher E, Dione DP, Heller EN et al (2000) Acute ischemic dysfunction alters coronary flow reserve in remote nonischemic regions: potential mechanical etiology identified in an acute canine model. J Nucl Cardiol 7:112–122

    Article  PubMed  CAS  Google Scholar 

  33. Yoon SB, Lee SH, Choi S et al (2006) Transient global left ventricular dysfunction in a localized myocardial infarction related to occlusion of the distal left anterior descending artery. Clin Cardiol 29:418–420

    Article  PubMed  Google Scholar 

  34. Wang J, Weil MH, Tang W et al (2006) A comparison of electrically induced cardiac arrest with cardiac arrest produced by coronary occlusion. Resuscitation 72:477–483

    Article  PubMed  Google Scholar 

  35. Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edge sword? J Clin Invest 76:1713–1719

    Article  PubMed  CAS  Google Scholar 

  36. Fava M, Loyola S, Bertoni H et al (2005) Massive pulmonary embolism: percutaneous mechanical thrombectomy during cardiopulmonary resuscitation. J Vasc Interv Radiol 16:119–123

    PubMed  Google Scholar 

  37. Ruiz-Bailen M, Aguayo-de-Hoyos E, Serrano-Corcoles MC et al (2001) Thrombolysis with recombinant tissue plasminogen activator during cardiopulmonary resuscitation in fulminant pulmonary embolism. A case series. Resuscitation 51:97–101

    CAS  Google Scholar 

  38. Sporh F, Bottiger BW (2005) Thrombolytics in CPR. Current advantages in cardiopulmonary resuscitation. Minerva Anestesiol 71:291–296

    Google Scholar 

  39. Ristagno G, Tang W, Xu T et al (2007) Outcomes of CPR in the presence of partial occlusion of left anterior descending coronary artery. Resuscitation Jul 16 [Epub ahead of print]

    Google Scholar 

  40. Peatfield RC, Sillett RW, Taylor D et al (1997) Survival after cardiac arrest in the hospital. Lancet 1:1223–1225

    Google Scholar 

  41. DeBard ML (1981) Cardiopulmonary resuscitation: analysis of six years experience and review of the literature. Ann Emerg Med 10:408–416

    Article  PubMed  CAS  Google Scholar 

  42. Schenenberger RA, von Planta M, von Planta I (1994) Survival after failed out of hospital resuscitation. Are further therapeutic efforts in the emergency department futile? Arch Intern Med 154:2433–2437

    Article  Google Scholar 

  43. Tang W, Weil MH, Sun S et al (1993) Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med 21:1046–1050

    Article  PubMed  CAS  Google Scholar 

  44. Tang W, Weil MH, Sun S et al (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 92:3089–3093

    PubMed  CAS  Google Scholar 

  45. Xie J, Weil MH, Sun S et al (1997) High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 96:683–688

    PubMed  CAS  Google Scholar 

  46. Jones JL, Proskauer CC, Paul WK et al (1980) Ultrastructural injury to chick myocardial cells in vitro following ‘electric countershock’ Circ Res 46:387–394

    PubMed  CAS  Google Scholar 

  47. Caterine MR, Spencer KT, Smith RS et al (1994) Direct current countershocks generate free radicals. Circulation 90(Suppl 1):1–5. Abstract

    Google Scholar 

  48. Gaba DM, Maxwell MS, Merlone S et al (1987) Internal countershock produces myocardial damage and lactate production without myocardial ischemia in anesthetized dogs. Anesthesiology 66:477–482

    Article  PubMed  CAS  Google Scholar 

  49. Kato S, Takemura G, Maruyama R (2001) Apoptosis, rather than oncosis, is the predominant mode of spontaneous death of isolated adult rat cardiac myocytes in culture. Jpn Circ J 65:743–748

    Article  PubMed  CAS  Google Scholar 

  50. Kubin T, Ando H, Scholz D et al (1999) Microvascular endothelial cells remodel cultured adult cardiomyocytes and increase their survival. Am J Physiol 276:H2179–H2187

    PubMed  CAS  Google Scholar 

  51. Ristagno G, Wang T, Tsai M et al (2007) High energy defibrillation impairs contractility and intracellular calcium dynamics. Circulation; in press. Abstract

    Google Scholar 

  52. Ren J, Loren EW (2002) Measurement of cardiac mechanical function in isolated ventricular myocytes from rats and mice by computerized video-based imaging. Biol Proced Online 3:43–53

    Article  Google Scholar 

  53. Takemura G, Fujiwara H (2004) Role of apoptosis in remodeling after myocardial infarction. Pharmacol Ther 104:1–16

    Article  PubMed  CAS  Google Scholar 

  54. Kunapuli S, Rosanio S, Schwarz ER (2006) “How do cardiomyocytes die?” apoptosis and autophagic cell death in cardiac myocytes. J Card Fail 12:381–391

    Article  PubMed  CAS  Google Scholar 

  55. Nepomnyashchikh LM, Semenov DE (2000) Apoptosis of cardiomyocytes as extreme manifestation of regeneration and plastic insufficiency of myocardium. Bull Exp Biol Med 130:903–907

    PubMed  CAS  Google Scholar 

  56. Mollmann H, Nef HM, Kostin S et al (2006) Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res 71:661–671

    Article  PubMed  CAS  Google Scholar 

  57. Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757

    Article  PubMed  CAS  Google Scholar 

  58. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32–45

    Article  PubMed  CAS  Google Scholar 

  59. Minguell JJ, Erices A (2006) Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med 231:39–49

    CAS  Google Scholar 

  60. Haider HKh, Ashraf M (2005) Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol 288:H2557–H2567

    Article  PubMed  CAS  Google Scholar 

  61. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520

    CAS  Google Scholar 

  62. Jain M, Pfister O, Roger J et al (2005) Mesenchymal stem cells in the infarcted heart. Coronary Art Dis 16:93–97

    Article  Google Scholar 

  63. Dai W, Hale SL, Martin BJ et al (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short-and long-term effects. Circulation 112:214–223

    Article  PubMed  Google Scholar 

  64. Price MJ, Chou CC, Frantzen M et al (2006) Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol 111:231–239

    Article  PubMed  Google Scholar 

  65. Wollert KC, Meyer GP, Lotz J et al (2004) Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet 364:141–148

    Article  PubMed  Google Scholar 

  66. Chen SL, Fang WW, Ye F et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95

    Article  PubMed  Google Scholar 

  67. Wang T, Tang W, Sun S et al (2006) Improved function of infarcted myocardium following intravenous infusion of bone marrow mesenchymal stem cells. Crit Care Med 34:115 Abstract

    CAS  Google Scholar 

  68. Saito T, Kuang JQ, Bittira B et al (2002) Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 74:19–24

    Article  PubMed  Google Scholar 

  69. Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci 102:11474–11479

    Article  PubMed  CAS  Google Scholar 

  70. Fukuda K, Yuasa S (2006) Stem cells as a source of regenerative cardiomyocytes. Circ Res 98:1002–1013

    Article  PubMed  CAS  Google Scholar 

  71. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    Article  PubMed  CAS  Google Scholar 

  72. Nagaya N, Kangawa K, Itoh T et al (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135

    Article  PubMed  Google Scholar 

  73. Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodelling and improves cardiac function. Nat Med 7:430–436

    Article  PubMed  CAS  Google Scholar 

  74. Crisostomo PR, Wang M, Wairiuko GM et al (2006) High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock 26:575–580

    Article  PubMed  CAS  Google Scholar 

  75. Wang M, Tsai BM, Crisostomo PR et al (2006) Pretreatment with adult progenitor cells improves recovery and decreases native myocardial proinflammatory signaling after ischemia. Shock 25:454–459

    Article  PubMed  CAS  Google Scholar 

  76. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    Article  PubMed  CAS  Google Scholar 

  77. Miyagawa S, Sawa Y, Taketani S et al (2002) Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation 105:2556–2561

    Article  PubMed  CAS  Google Scholar 

  78. Sam J, Angoulvant D, Fazel S et al (2005) Heart cell implantation after myocardial infarction. Coron Artery Dis 16:85–91

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this paper

Cite this paper

Ristagno, G., Wang, T., Tang, W. (2008). New Aspects of Basic Cardiopulmonary Resuscitation Research: From Clinically Relevant Animal Models to Cells. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-0773-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0773-4_18

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0772-7

  • Online ISBN: 978-88-470-0773-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics