Plasma Proteins and Protein Catabolism

  • Paolo Tessari
  • Renato Millioni


In the adult organism, maintenance of body protein stores is the result of changes linked to a diurnal rhythm of catabolic and anabolic phases [1]. In physiological states a net loss of body proteins occurs in the periods between meals, particularly at night-time, and during exercise [2]. Conversely, a net protein gain occurs during meal absorption, both in the entire body and at muscle level [3]. Recently, the recovery phase after exercise has also been recognised as anabolic [4].


Arterioscler Thromb Vasc Biol Protein Catabolism Albumin Synthesis Plasma Fibronectin Fractional Synthesis Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Millward DJ, Rivers JPW (1989) The need for indispensable amino acids: the concept of the anabolic drive. Diabetes Metab Rev 5:191–212PubMedCrossRefGoogle Scholar
  2. 2.
    Wolfe RR, Goodenaugh RD, Wolfe MH et al (1982) Isotopic analysis of leucine and urea metabolism in exercising humans. J Appl Physiol 52:458–466PubMedGoogle Scholar
  3. 3.
    Tessari P, Zanetti M, Barazzoni R et al (1996) Mechanisms of post-prandial protein accretion in human skeletal muscle: insight from leucine and phenylalanine forearm kinetics. J Clin Invest 98:1361–1372PubMedCrossRefGoogle Scholar
  4. 4.
    Devlin JT, Brodsky I, Scrimgeour A et al (1990) Amino acid metabolism after intense exercise. Am J Physiol 21:E249–E255Google Scholar
  5. 5.
    Kimball SR, Jefferson LS (2004) Regulation of global and specific mRNA translation by oral administration of branched-chain amino acids. Biochem Biophys Res Commun 313:423–427PubMedCrossRefGoogle Scholar
  6. 6.
    Jefferson LS, Kimball SR (2003) Amino acids as regulators of gene expression at the level of mRNA translation. J Nutr 133:2046S–2051SPubMedGoogle Scholar
  7. 7.
    Shah OJ, Anthony JC, Kimball SR, Jefferson LS (2000) 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 279:E715–E712PubMedGoogle Scholar
  8. 8.
    Munro HN, Crim MC (1988) The proteins and amino acids. In: Shils ME, Young VR (eds) Modern nutrition in health and disease. Lea & Febiger, Philadelphia, pp 1–37Google Scholar
  9. 9.
    Waterlow JC, Garlick PJ, Millward DJ (1978) Protein turnover in mammalian tissues and in the whole body. North Holland, AmsterdamGoogle Scholar
  10. 10.
    Reeds PJ, Fuller MF, Nicholson BA (1984)Metabolic basis of energy expenditure with particular reference to protein. In: Garrow JS, Halliday D (eds) Substrate and energy metabolism in man. John Libbey, London, pp 46–57Google Scholar
  11. 11.
    Doweiko JP, Nompleggi DJ (1991) Role of albumin in human physiology and pathophysiology. JPEN J Parenter Enterai Nutr 15:207–211CrossRefGoogle Scholar
  12. 12.
    Rothschild MA (1972) Albumin synthesis (first of two parts). N Engl J Med 286:748–757PubMedCrossRefGoogle Scholar
  13. 13.
    Rothschild MA, Oratz M, Schreiber S (1973) Albumin metabolism. Gastroenterology 64:324–337PubMedGoogle Scholar
  14. 14.
    Rothschild MA (1972) Albumin synthesis (second of two parts). N Engl J Med 286:816–820PubMedCrossRefGoogle Scholar
  15. 15.
    De Feo P, Horber FF, Haymond MW (1992) Meal stimulation of albumin synthesis: a significant contributor to whole-body protein synthesis in humans. Am J Physiol 263:E794–E799PubMedGoogle Scholar
  16. 16.
    Cayol M, Boirie Y, Rambourdin F et al (1997) Influence of protein intake on whole body and splanchnic leucine kinetics in humans. Am J Physiol 272:E584–E591PubMedGoogle Scholar
  17. 17.
    Tessari P, Barazzoni R, Kiwanuka E et al (2002) Impairment of albumin and whole-body postprandial protein synthesis in compensated cirrhosis. Am J Physiol 282:E304–E311Google Scholar
  18. 18.
    Hunter KA, Ballmer PE, Anderson SE et al (1995) Acute stimulation of albumin synthesis rate with oral meal feeding in healthy subjects measured with [ring-2H5]phenylalanine. Clin Sci 88:235–242PubMedGoogle Scholar
  19. 19.
    Volpi E, Lucidi P, Cruciani G et al (1996) Contribution of amino acids and insulin to protein anabolism during meal absorption. Diabetes 45:1245–1252PubMedCrossRefGoogle Scholar
  20. 20.
    De Feo P, Volpi E, Lucidi P et al (1993) Physiological increments in plasma insulin concentrations have selective and different effects on hepatic protein synthesis in normal humans. Diabetes 42:995–1002PubMedCrossRefGoogle Scholar
  21. 21.
    Ballmer PE, McNurlan MA, Grant I, Garlick PJ (1995) Down regulation of albumin synthesis in the rat by human recombinant interleukin-1 beta or turpentine and the response to nutrients. JPEN J Parenter Enterai Nutr 19:266–271CrossRefGoogle Scholar
  22. 22.
    Kanda Y, Goodman DS, Canfield RE, Morgan FJ (1974) The amino acid sequence of human plasma prealbumin. J Biol Chem 249:6796–6805PubMedGoogle Scholar
  23. 23.
    Blake CCF, Geisow MJ, Swan IDA et al (1974) Structure of human plasma prealbumin at 2.5 A resolution. A preliminary report on the polypeptide chain conformation quaternary structure and thyroxine binding. J Mol Biol 88:1–12PubMedCrossRefGoogle Scholar
  24. 24.
    Sparkes RS, Sasaki H, Mohandas T et al (1987) Assignment of the prealbumin (PALB) gene (familial amyloidotic polyneuropathy) to human chromosome region 18qll.2-ql2.1. Hum Genet 75:151–154PubMedCrossRefGoogle Scholar
  25. 25.
    Herbert J, Wilcox JN, Pham KC et al (1986) Transthyretin: a choroid plexus specific transport protein in human brain. Neurology 36:900–911PubMedGoogle Scholar
  26. 26.
    Episkopou V, Maeda S, Nishiguchi S et al (1993) Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci USA 90:2375–2379PubMedCrossRefGoogle Scholar
  27. 27.
    Schreiber G, Aldred AR, Jaworowski A et al (1990) Thyroxine transport from blood to brain via transthyretin synthesis in choroid plexus. Am J Physiol 258:R338–R345PubMedGoogle Scholar
  28. 28.
    Ernstrom U, Petterson T, Jornvall H (1995) A yellow component associated with human transthyretin has properties like a pterin derivative, 7,8-dihydropterin-6-carboxaldehyde. FEBS Lett 360:177–182PubMedCrossRefGoogle Scholar
  29. 29.
    Sousa MM, Berglund L, Saraiva MJ (2000) Transthyretin in high density lipoproteins—association via apolipoprotein. A-I. J Lipid Res 41:58–65PubMedGoogle Scholar
  30. 30.
    Shirahama T, Skinner M, Westermark P et al (1982) Senile cerebral amyloid. Prealbumin as a common constituent in the neuritic plaques, in the neurofibrillary tangle and in the microangiopathic lesion. Am JPathol 107:41–50Google Scholar
  31. 31.
    Saraiva MJM(2001) Transthyretin mutations in hyperthyroxinemia and amyloid diseases. Hum Mutat 17:493–503Google Scholar
  32. 32.
    Refetoff S, Murata Y, Mori Y et al (1996) Thyroxinebinding globulin: organization of the gene and variants. Horm Res45:128–138PubMedCrossRefGoogle Scholar
  33. 33.
    Mori Y, Miura Y, Oiso Y et al (1995) Precise localization of the human thyroxine-binding globulin gene to chromosome Xq22.2 by fluorescence in situ hybridization. Hum Genet 96:481–482PubMedCrossRefGoogle Scholar
  34. 34.
    Schussler GC (2000) The thyroxine-binding proteins. Thyroid 10:141–149PubMedCrossRefGoogle Scholar
  35. 35.
    Flink IL, Bailey TJ, Gustafson TA et al (1986) Complete amino acid sequence of human thyroxinebinding globulin deduced from cloned DNA: close homology to the serine antiproteases. Proc Natl Acad Sci USA 83:7708–7712PubMedCrossRefGoogle Scholar
  36. 36.
    Gettins PG(2002) Serpin structure, mechanism, and function. Chem Rev 102:4751–4804Google Scholar
  37. 37.
    Murata Y, Same DH, Horwitz AL et al (1985) Characterization of thyroxine-binding globulin secreted by a human hepatoma cell line. J Clin Endocrinol Metab 60:472–478PubMedCrossRefGoogle Scholar
  38. 38.
    Burr WA, Ramsden DB, Hoffenberg R (1980) Hereditary abnormalities of thyroxine-binding globulin concentration. A study of 19 kindreds with inherited increase or decrease of thyroxine-binding globulin. Q J Med 49:295–313PubMedGoogle Scholar
  39. 39.
    Huebers HA, Finch CA (1987) The physiology of transferrin and transferrin receptors. Physiol Rev 67:520–582PubMedGoogle Scholar
  40. 40.
    MacGillivray RTA, Moore SA, Chen J et al (1998) Two high-resolution crystal structures of the recombinant N-lobe of human transferrin reveal a structural change implicated in iron release. Biochemistry 37:7919–7928PubMedCrossRefGoogle Scholar
  41. 41.
    Aldred AR, Dickson PW, Marley PD, Schreiber G (1987) Distribution of transferrin synthesis in brain and other tissue. J Biol Chem 262:5293–5297PubMedGoogle Scholar
  42. 42.
    Ponka P (1999) Cellular iron metabolism. Kidney Int Suppl 69:S2–S11PubMedCrossRefGoogle Scholar
  43. 43.
    Ponka P (1997) Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood 89:1–25PubMedGoogle Scholar
  44. 44.
    Castaldi G, Liso V (1997) Malattie del sangue e degli organi Ematopoietici. McGraw-Hill, MilanGoogle Scholar
  45. 45.
    Gordon AH (1976) The acute phase plasma proteins. In: Bianchi R, Mariani G, Mcfarlane AS (eds) Plasma protein turnover. MacMillan Press, London, pp 381–394Google Scholar
  46. 46.
    Morimoto R, Tissieres A, Georgopoulos C (1990) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  47. 47.
    McDonald L, Edgill M (1959) Changes in coagulability of the blood during various phases of ischaemic heart-disease. Lancet 1:1115–1158PubMedCrossRefGoogle Scholar
  48. 48.
    Dormandy JA, Hoare E, Colley J et al (1973) Clinical, haemodynamic, rhelogical and biochemical findings in 126 patients with intermittent claudication. Br Med J 4:576–581PubMedCrossRefGoogle Scholar
  49. 49.
    Wilhemsen L, Svardsudd K, Korsan-Bengsten K (1984) Fibrinogen as a risk factor for stroke and myocardial infarction. N Eng J Med 311:501–505CrossRefGoogle Scholar
  50. 50.
    Stone MC, Thorp JM (1985) Plasma fibrinogen—a major coronary risk factor. J R Coll Gen Pract 3:565–569Google Scholar
  51. 51.
    Meade TW, Brozovic M, Chakrabarti RR et al (1986) Haemostatic function and ischemic heart disease: principal results of the Northwich Park Heart Study. Lancet 533–537Google Scholar
  52. 52.
    Kannel WB, Wolf PA, Castelli WP, D’Agostino RB (1987) Fibrinogen and risk of cardiovascular disease: the Framingham Study. J Am Med Ass 258:1183–1186CrossRefGoogle Scholar
  53. 53.
    Yarnell JW, Baker IA, Sweetnam PM et al (1991) Fibrinogen, viscosity and white cell count are major risk factors for ischemie heart disease. The Caerphilly and Speedwell collaborative heart disease studies. Circulation 83:836–844PubMedGoogle Scholar
  54. 54.
    Kannel WB, D’Agostino RB, Belanger AJ (1987) Fibrinogen, cigarette smoking and risk of cardiovascular disease: insights from the Framingham Study. Am Heart J 113:1006–1010PubMedCrossRefGoogle Scholar
  55. 55.
    Folsom AR, Wu KK, Davis CE et al (1991) Population correlates of plasma fibrinogen and factor VII, putative cardiovascular risk factors. Atherosclerosis 91:191–205PubMedCrossRefGoogle Scholar
  56. 56.
    Lee AJ, Lowe GDO, Woodward M, Tunstall-Pedoe H (1993) Fibrinogen in relation to personal history of prevalent hypertension, diabetes, stroke, intermittent claudication, coronary heart disease, and family history. The Scottish Heart Health Study. Br Heart J 69:338–342PubMedCrossRefGoogle Scholar
  57. 57.
    Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham Study. J Am Med Ass 241:2035–2038CrossRefGoogle Scholar
  58. 58.
    DeFronzo R, Ferrannini E (1991) Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14:173–194PubMedCrossRefGoogle Scholar
  59. 59.
    De Feo P, Gan Gaisano M, Haymond MW (1991) Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans. J Clin Invest 88:833–840PubMedCrossRefGoogle Scholar
  60. 60.
    Bruttomesso D, Iori E, Kiwanuka E et al (2001) Insulin infusion normalizes fasting and post-prandial albumin and fibrinogen synthesis in Type 1 diabetes mellitus. Diabet Med 18:915–920PubMedCrossRefGoogle Scholar
  61. 61.
    Barazzoni R, Kiwanuka E, Zanetti M et al (2003) Insulin acutely increases fibrinogen production in type 2 diabetic but not in non diabetic people. Diabetes 52:1851–1856PubMedCrossRefGoogle Scholar
  62. 62.
    Tessari P, Iori E, Vettere M et al (1997) Evidence for acute stimulation of fibrinogen production by glucagon in humans. Diabetes 46:1368–1371PubMedCrossRefGoogle Scholar
  63. 63.
    Unger RH (1972) Glucagon and insulin: glucagon ratio in diabetes and the other catabolic illnesses. Diabetes 20:834–838Google Scholar
  64. 64.
    Russell RCG, Walker CJ, Bloom SR (1975) Hyperglucagonemia in the surgical patient. Br Med J 1:10–12PubMedCrossRefGoogle Scholar
  65. 65.
    Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342:836–843PubMedCrossRefGoogle Scholar
  66. 66.
    Ridker PM, Buring JE, Shih J et al (1998) Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 98:731–733PubMedGoogle Scholar
  67. 67.
    Ridker PM (2003) Cardiology Patient Page. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation 108:e81–e85Google Scholar
  68. 68.
    Fuhrman MP, Charney P, Mueller CM (2004) Hepatic proteins and nutrition assessment. Am Diet Assoc 104:1258–1264CrossRefGoogle Scholar
  69. 69.
    Ballou SP, Lozanski G (1992) Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine 4:361–368PubMedCrossRefGoogle Scholar
  70. 70.
    Woollard KJ, Phillips DC, Griffiths HR (2002) Direct modulatory effect of C-reactive protein on primary human monocyte adhesion to human endothelial cells. Clin Exp Immunol 130:256–262PubMedCrossRefGoogle Scholar
  71. 71.
    Fu T, Borensztajn J (2002) Macrophage uptake of low-density lipoprotein bound to aggregated C-reactive protein: possible mechanism of foam-cell formation in atherosclerotic lesions. Biochem J 366:195–201PubMedGoogle Scholar
  72. 72.
    Pasceri V, Willerson JT, Yeh ET (2000) Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 102:2165–2168PubMedGoogle Scholar
  73. 73.
    Devaraj S, Xu DY, Jialal I (2003) C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 107:398–404PubMedCrossRefGoogle Scholar
  74. 74.
    Hak AE, Stehouwer CD, Bots ML et al (1999) Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler Thromb Vase Biol 19:1986–1991Google Scholar
  75. 75.
    Lemieux I, Pascot A, Prud’homme D et al (2001) Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol 21:961–967PubMedGoogle Scholar
  76. 76.
    Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW (1999) C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 19:972–978PubMedGoogle Scholar
  77. 77.
    Castell JV, Gomez-Lechon MJ, David M et al (1989) IL-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett 242:237–239PubMedCrossRefGoogle Scholar
  78. 78.
    Fried SK, Bunkin DA, Greenberg AS (1998) Omental and subcutaneous adipose tissues of obese subjects release IL-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 83:847–850PubMedCrossRefGoogle Scholar
  79. 79.
    Mohamed-Ali V, Goodrick S, Rawesh A et al (1997) Subcutaneous adipose tissue releases IL-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 82:4196–4200PubMedCrossRefGoogle Scholar
  80. 80.
    Heilbronn LK, Noakes M, Clifton PM (2001) Energy restriction and weight loss on very-low-fat diets reduce C-reactive protein concentrations in obese, healthy women. Arterioscler Thromb Vasc Biol 21:968–970PubMedGoogle Scholar
  81. 81.
    Tchernof A, Nolan A, Sites CK et al (2002)Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation 105:564–569PubMedCrossRefGoogle Scholar
  82. 82.
    Church TS, Barlow CE, Earnest CP et al (2002) Associations between cardiorespiratory fitness and C-reactive protein in men. Arterioscler Thromb Vasc Biol 22:1869–1876PubMedCrossRefGoogle Scholar
  83. 83.
    Després JP, Lamarche B, Bouchard C et al (1995) Exercise and the prevention of dyslipidemia and coronary heart disease. Int J Obes 19:S45–S51Google Scholar
  84. 84.
    Okita K, Nishijima H, Murakami T et al (2004) Can exercise training with weight loss lower serum C-reactive protein levels? Arterioscler Thromb Vasc Biol 24:1868–1873PubMedCrossRefGoogle Scholar
  85. 85.
    Obisesan TO, Leeuwenburgh C, Phillips T et al (2004) C-reactive protein genotypes affect baseline, but not exercise-training induced changes in C-reactive protein levels. Arterioscler Thromb Vasc Biol 24:1874–1879PubMedCrossRefGoogle Scholar
  86. 86.
    Ross R, Dagnone D, Jones PJ et al (2000) Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med 133:92–103PubMedGoogle Scholar
  87. 87.
    Staels B, Koenig W, Habib A et al (1998) Activation of human aortic smooth-muscle cells is inhibited by PPAR but not by PPAR activators. Nature 393:790–793PubMedCrossRefGoogle Scholar
  88. 88.
    Ridker PM, Rifai N, Pfeffer MA et al (1999) Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation 100:230–235PubMedGoogle Scholar
  89. 89.
    Mosher DF(1980) Fibronectin. Prog Hemost Thromb 5:111–151Google Scholar
  90. 90.
    Kornblihtt AR, Vibe-Pedersen K, Baralle FE (1983) Isolation and characterization of cDNA clones for human and bovine fibronectins. Proc Natl Acad Sci USA 11:3218–3222CrossRefGoogle Scholar
  91. 91.
    Tamkun JW, Hynes RO (1983) Plasma fibronectin is synthesized and secreted by hepatocytes. J Biol Chem 10258:4641–4647Google Scholar
  92. 92.
    Amrani DL, Homandberg GA, Tooney NM et al (1983) Separation and analysis of the major forms of plasma fibronectin. Biochem Biophys Acta 28748:308–320Google Scholar
  93. 93.
    Petersen TE, Thogersen HC, Skorstengaard K et al (1983) Partial primary structure of bovine plasma fibronectin: three types of internal homology. Proc Natl Acad Sci USA 1:137–141CrossRefGoogle Scholar
  94. 94.
    Engvall E, Ruoslahti E (1977) Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer 1520:1–5CrossRefGoogle Scholar
  95. 95.
    Yamada KM (1983) Cell surface interactions with extracellular materials. Annu Rev Biochem 52:761–799PubMedCrossRefGoogle Scholar
  96. 96.
    Arneson MA, Hammerschmidt DE, Furcht LT, King RA (1980) A new form of Ehlers-Danlos syndrome. Fibronectin corrects defective platelet function. JAMA 244:144–147PubMedCrossRefGoogle Scholar
  97. 97.
    Blumenstock FA, Saba TM, Weber P, Laffin R (1978) Biochemical and immunological characterization of human opsonic alpha2SB glycoprotein: its identity with cold-insoluble globulin. J Biol Chem 253:4287–4291PubMedGoogle Scholar
  98. 98.
    Linn S (1998) DNA damage by iron and hydrogen peroxide in vitro and in vivo. Drug Metab Rev 30:313–326PubMedCrossRefGoogle Scholar
  99. 99.
    Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochem Biophys Acta 1275:161–203PubMedCrossRefGoogle Scholar
  100. 100.
    Theil EC (1990) The ferritin family of iron storage proteins. Adv Enzymol Relat Areas Mol Biol 63:421–449PubMedCrossRefGoogle Scholar
  101. 101.
    Chasteen ND (1998) Ferritin. Uptake, storage, and release of iron. Met Ions Biol Syst 35:479–514PubMedGoogle Scholar
  102. 102.
    Rucker P, Torti FM, Torti SV (1996) Role of H and L subunits in mouse ferritin. J Biol Chem 271:33352–33357PubMedCrossRefGoogle Scholar
  103. 103.
    Balla G, Jacob HS, Balla J et al (1992) Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 267:18148–18153PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Paolo Tessari
    • 1
  • Renato Millioni
    • 1
  1. 1.Department of Clinical and Experimental Medicine, Chair of MetabolismUniversity of PaduaPaduaItaly

Personalised recommendations