Skip to main content

Body Composition: Physiology, Pathophysiology and Methods of Evaluation

  • Chapter
Cachexia and Wasting: A Modern Approach
  • 2170 Accesses

Abstract

Estimating body compartments is fundamental in performing nutritional assessments. In recent years, highly reliable and minimally invasive methods have become available for quantifying body fluids, fat-free mass and fat mass. These measurements integrate the clinical evaluation, overcoming the drawbacks of anthropometric measurements used as indirect parameters of nutritional status and body composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nelson KM, Weinsier RL, Long CL, Schutz Y (1992) Prediction of resting energy expenditure from fatfree mass and fat mass. Am J Clin Nutr 56:848–856

    PubMed  CAS  Google Scholar 

  2. Ellis KJ, Jasumura S, Morgan WD (eds) (1987) In vivo body composition studies. Institute of Physical Science in Medicine, London

    Google Scholar 

  3. Vaisman N, Pencharz PB, Koren G, Johnson JK (1987) Comparison of oral and intravenous Heitmann administration of sodium bromide for extracellular water measurements. Am J Clin Nutr 46:1–4

    PubMed  CAS  Google Scholar 

  4. Shike M, Russel DM, Detsky AS et al (1984) Changes in body composition in patients with small-cell cancer. The effect of total parenteral nutrition as an adjunct to chemotherapy. Ann Intern Med 101:303–309

    PubMed  CAS  Google Scholar 

  5. Toth MJ, Gottlieb SS, Goran MI et al (1997) Daily energy expenditure in free-living heart failure patients. Am J Physiol 272:E469–E475

    PubMed  CAS  Google Scholar 

  6. Mitch WE (1998) Mechanisms causing loss of lean body mass in kidney disease. Robert H Herman Memorial Award in Clinical Nutrition Lecture 1997. Am J Clin Nutr 67:359–366

    PubMed  CAS  Google Scholar 

  7. Roubenoff R, Roubenoff RA, Cannon JG et al (1994) Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest 93:2379–2386

    Article  PubMed  CAS  Google Scholar 

  8. Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. NEJM 335:1897–1905

    Article  PubMed  CAS  Google Scholar 

  9. Fong Y, Moldawer LL, Marano M et al (1989) Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Am J Physiol 256:R659–R665

    PubMed  CAS  Google Scholar 

  10. Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2:862–871

    Article  PubMed  CAS  Google Scholar 

  11. Kaibara A, Moshyedi A, Auffenberg T et al (1998) Leptin produces anorexia and weight loss without inducing an acute phase response or protein wasting. Am J Physiol 274:R1518–R1525

    PubMed  CAS  Google Scholar 

  12. Hyltander A, Daneryd P, Sandstrom R et al (2000) Beta-adrenoceptor activity and resting energy metabolism in weight losing cancer patients. Eur J Cancer 36:330–334

    Article  PubMed  CAS  Google Scholar 

  13. Keys A, Brozek J (1953) Body fat in adult men. Physiol Rev 33:245–325

    PubMed  CAS  Google Scholar 

  14. Brozek J, Grande F, Anderson JT, Keys A (1963) Densitometric analysis of body composition: revision of some quantitative assumptions. Ann NY Acad Sci 110:113–140

    Article  PubMed  CAS  Google Scholar 

  15. Burkinshaw L, Cotes JE (1973) Body potassium and fat-free mass. Clin Sci 44:621–625

    PubMed  CAS  Google Scholar 

  16. Sergi G, Bertani R, Calliari I et al (2003) Total body water and extracellular water measurements through in vivo dilution of D2O and bromide as tracers. Spectroscopy 17:603–611

    CAS  Google Scholar 

  17. Bartoli WP, Davis JM, Pate RR et al (1993) Weekly variability in total body water using 2H2O dilution in college-age males. Med Sci Sports Exerc 25:1422–1428

    PubMed  CAS  Google Scholar 

  18. Pace N, Rathburn EN (1945) Studies on body composition. III The body water and chemically combined nitrogen content in relation to fat content. J Biol Chem 158:685–691

    CAS  Google Scholar 

  19. Sheng HP, Huggins RA (1979) A review of body composition studies with emphasis on total body water and fat. Am J Clin Nutr 32:630–647

    PubMed  CAS  Google Scholar 

  20. Sergi G, Perini P, Bussolotto M et al (1993) Body composition study in the elderly: comparison between tritium dilution method and dual photon absorptiometry. J Gerontol 48:M244–M248

    PubMed  CAS  Google Scholar 

  21. Sergi G, Lupoli L, Volpato S et al (2004) Body fluid distribution in elderly subjects affected with congestive heart failure. Ann Clin Lab Sci 34:416–422

    PubMed  Google Scholar 

  22. Shao HR, Liu QX, Enzi G et al (1990) Evaluation of the extracellular water in human body by determination of Br concentration in blood plasma. Nucl Instrum Meth Phys Res B49:238–240

    CAS  Google Scholar 

  23. Heitmann BL (1994) Impedance: a valid method in assessment of body composition? Eur J Clin Nutr 48:228–240

    PubMed  CAS  Google Scholar 

  24. Thomasset A (1963) Bio-electric properties of tissues. Estimation by measurement of impedance of extracellular ionic strength and intracellular ionic strength in the clinic. Lyon Med 209:1325–1350

    PubMed  CAS  Google Scholar 

  25. Kushner RF, Schoeller MD (1986) Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr 44:417–424

    PubMed  CAS  Google Scholar 

  26. Kushner RF, Schoeller DA, Fjeld CR, Danford L (1992) Is the impedance index (Ht/R) significant in predicting total body water? Am J Clin Nutr 56:835–839

    PubMed  CAS  Google Scholar 

  27. Visser M, Deurenberg P, van Staveren WA (1995) Multi-frequency bioelectrical impedance for assessing total body water and extracellular water in elderly subjects. Eur J Clin Nutr 49:256–266

    PubMed  CAS  Google Scholar 

  28. Sun SS, Chumlea WC, Heymsfield SB et al (2003) Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr 77:331–340

    PubMed  CAS  Google Scholar 

  29. Segal KR, van Loan M, Fitzgerald PI et al (1988) Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am J Clin Nutr 47:7–14

    PubMed  CAS  Google Scholar 

  30. Rising R, Swinburn B, Larson K, Ravussin E (1991) Body composition in Pima Indians: validation of bioelectrical resistance. Am J Clin Nutr 53:594–598

    PubMed  CAS  Google Scholar 

  31. Roubenoff R, Baumgartner RN, Harris TB et al (1997) Application of bioelectrical impedance analysis to elderly populations. J Gerontol A Biol Sci Med Sci 52:M129–M136

    PubMed  CAS  Google Scholar 

  32. Kyle UG, Genton L, Karsegard L et al (2001) Single prediction equation for bioelectrical impedance analysis in adults 20–94 years. Nutrition 17:248–253

    Article  PubMed  CAS  Google Scholar 

  33. Lupoli L, Sergi G, Coin A et al (2004) Body composition in underweight elderly subjects: reliability of bioelectrical impedance analysis. Clin Nutr 23:1371–1380

    PubMed  Google Scholar 

  34. Sergi G, Bussolotto M, Perini P et al (1994) Accuracy of bioelectrical impedance analysis in estimation of extracellular space in healthy subjects and in fluid retention states. Ann Nutr Metab 38:158–165

    Article  PubMed  CAS  Google Scholar 

  35. Gudivaka R, Schoeller DA, Kushner RF et al (1999) Singleand multifrequency models for bioelectrical impedance analysis of body water compartments. J Appl Physiol 87:1087–1096

    PubMed  CAS  Google Scholar 

  36. Cohn SH, Palmer HE (1974) Recent advances in whole body counting: a review. J Nucl Biol Med 1:155–165

    Article  CAS  Google Scholar 

  37. Forbes GB, Gallup J, Hursh JB (1961) Estimation of total body fat from potassium-40 content. Sciences 133:101–102

    CAS  Google Scholar 

  38. Van Loan MD, Mayclin PL (1992) Body composition assessment: dual energy X ray absorptiometry (DEXA) compared to reference methods. Eur J Clin Nutr 46:125–130

    PubMed  Google Scholar 

  39. Economos CD, Nelson ME, Fiatarone MA et al (1997) A multi-center comparison of dual energy X-ray absorptiometers: in vivo and in vitro soft tissue measurement. Eur J Clin Nutr 51:312–317

    Article  PubMed  CAS  Google Scholar 

  40. Figueroa-Colon R, Mayo MS, Treuth MS et al (1998) Reproducibility of dual-energy X-ray absorptiometry measurements in prepubertal girls. Obes Res 6:262–267

    PubMed  CAS  Google Scholar 

  41. Fuller NJ, Hardingham CR, Graves M et al (1999) Assessment of limb muscle and adipose tissue by dual-energy X-ray absorptiometry using magnetic resonance imaging for comparison. Int J Obes Relat Metab Disord 23:1295–1302

    Article  PubMed  CAS  Google Scholar 

  42. Houtkooper LB, Going SB, Sproul J et al (2000) Comparison of methods for assessing body-composition changes over 1 y in postmenopausal women. Am J Clin Nutr 72:401–406

    PubMed  CAS  Google Scholar 

  43. Salamone LM, Fuerst T, Visser M et al (2000) Measurement of fat mass using DEXA: a validation study in elderly adults. J Appl Physiol 89:345–352

    PubMed  CAS  Google Scholar 

  44. Visser M, Fuerst T, Lang T et al (1999) Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. J Appl Physiol 87:1513–1520

    PubMed  CAS  Google Scholar 

  45. Visser M, Pahor M, Tylavsky F et al (2003) Oneand two-year change in body composition as measured by DXA in a population-based cohort of older men and women. J Appl Physiol 94:2368–2374

    Article  PubMed  CAS  Google Scholar 

  46. Heymsfield SB, Smith R, Aulet M et al (1990) Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr 52:214–218

    PubMed  CAS  Google Scholar 

  47. Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763

    PubMed  CAS  Google Scholar 

  48. Lukaski HC (1987) Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr 46:537–556

    PubMed  CAS  Google Scholar 

  49. Vartsky D, Ellis KJ, Vaswani AN et al (1984) An improved calibration for the in vivo determination of body nitrogen, hydrogen, and fat. Phys Med Biol 29:209–218

    Article  PubMed  CAS  Google Scholar 

  50. Cohn SH, Vartsky D, Yasumura S et al (1983) Indexes of body cell mass: nitrogen versus potassium. Am J Physiol 244:E305–E310

    PubMed  CAS  Google Scholar 

  51. Borkan GA, Gerzof SG, Robbins AH et al (1982) Assessment of abdominal fat content by computed tomography. Am J Clin Nutr 36:172–177

    PubMed  CAS  Google Scholar 

  52. Borkan GA, Hults DE, Gerzof SG, Robbins AH (1985) Comparison of body composition in middle-aged and elderly males using computed tomography. Am J Phys Anthropol 66:289–295

    Article  PubMed  CAS  Google Scholar 

  53. Ebbesen EN, Thomsen JS, Beck-Nielsen H et al (1999) Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone 25:713–724

    Article  PubMed  CAS  Google Scholar 

  54. Penninx BW, Pahor M, Cesari M et al (2004) Anemia is associated with disability and decreased physical performance and muscle strength in the elderly. J Am Geriatr Soc 52:719–724

    Article  PubMed  Google Scholar 

  55. Fowler PA, Fuller MF, Glasbey CA et al (1991) Total and subcutaneous adipose tissue in women: the measurement of distribution and accurate prediction of quantity by using magnetic resonance imaging. Am J Clin Nutr 54:18–25

    PubMed  CAS  Google Scholar 

  56. Murphy WA, Totty WG, Caroll JE (1986) MRI of normal and pathologic skeletal muscle. Am J Roentoenol 146:565–574

    CAS  Google Scholar 

  57. Ross R, Shaw KD, Martel Y et al (1993) Adipose tissue distribution measured by magnetic resonance imaging in obese women. Am J Med Nutr 57:470–475

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this chapter

Cite this chapter

Sergi, G., Bonometto, P., Coin, A., Enzi, G. (2006). Body Composition: Physiology, Pathophysiology and Methods of Evaluation. In: Mantovani, G., et al. Cachexia and Wasting: A Modern Approach. Springer, Milano. https://doi.org/10.1007/978-88-470-0552-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0552-5_17

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0471-9

  • Online ISBN: 978-88-470-0552-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics