Advertisement

Mente e cuore pp 207-246 | Cite as

L’influenza dei fattori psicologici sull’esito della riabilitazione cardiaca: applicazioni diagnostiche e prognostiche dell’intelligenza artificiale in psicocardiologia

  • E. Grossi
  • A. Compare
  • E. Molinari

Estratto

I dati attualmente disponibili suggeriscono che la riabilitazione cardiaca può contribuire alla riduzione dei fattori di rischio standard [1] nei pazienti con cardiopatia coronarica, grazie ad un aumento nella capacità funzionale cardiaca [2]. Gli equivalenti metabolici (MET) e il recupero della frequenza cardiaca (RFC) costituiscono degli indici della performance cardiaca durante l’esercizio fisico e negli ultimi venti anni sono stati sempre più considerati come predittori significativi della mortalità cardiovascolare e generale [3, 4, 5, 6, 7, 8].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. 1.
    Wenger NK, Froehlicher ES, Smith LK et al (1995) Cardiac Rehabilitation Clinical Practice Guidelines. Agency for Health Care Policy and Research and the National Heart, Lung, and Blood Institute, Rockville, MdGoogle Scholar
  2. 2.
    Maines TY, Lavie CJ, Milani RV et al (1997) Effects of CR and exercise programs on exercise capacity, coronary risk factors, behavior, quality of life in patients with coronary heart disease. South Med J 90:43–49PubMedGoogle Scholar
  3. 3.
    Chang JA, Froelicher VF (1994) Clinical and exercise test markers of prognosis in patients with stable coronary artery disease. Curr Probl Cardiol 19:533–587PubMedCrossRefGoogle Scholar
  4. 4.
    Pate RR, Pratt M, Blair SN et al (1995) Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 273:402–407PubMedCrossRefGoogle Scholar
  5. 5.
    Tietz NW (1997) Practice guideline for cardiac profiling. Am J Clin Pathol 108:696–699PubMedGoogle Scholar
  6. 6.
    Bittner V, Sanderson B, Breland J et al (2000) Assessing functional capacity as an outcome in cardiac rehabilitation. J Cardiopulm Rehabil 20:263–264CrossRefGoogle Scholar
  7. 7.
    Myers J, Prakash M, Froelicher V et al (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346:793–801PubMedCrossRefGoogle Scholar
  8. 8.
    Pierson LM, Miller LE, Herbert WG (2004) Predicting exercise training outcome from cardiac rehabilitation. J Cardiopulm Rehabil 24:113–118; quiz 119–120PubMedCrossRefGoogle Scholar
  9. 9.
    Jette M, Sidney K, Blumchen G (1990) Metabolic equivalents (METs) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 13:555–565PubMedCrossRefGoogle Scholar
  10. 10.
    Balady GJ, Jette D, Scheer J, Downing J (1996) Changes in exercise capacity following cardiac rehabilitation in patients stratified according to age and gender. Results of the Massachusetts Association of Cardiovascular and Pulmonary Rehabilitation Multicenter Database. J Cardiopulm Rehabil 16:38–46PubMedCrossRefGoogle Scholar
  11. 11.
    Shiran A, Kornfeld S, Zur S et al (1997) Determinants of improvement in exercise capacity in patients undergoing cardiac rehabilitation. Cardiology 88:207–213PubMedGoogle Scholar
  12. 12.
    Taylor A (1999) Physiological response to a short period of exercise training in patients with chronic heart failure. Physiother Res Int 4:237–249PubMedCrossRefGoogle Scholar
  13. 13.
    Cole CR, Blackstone EH, Pashkow FJ et al (1999) Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 341:1351–1357PubMedCrossRefGoogle Scholar
  14. 14.
    Nishime EO, Cole CR, Blackstone EH et al (2000) Heart rate recovery and treadmill exercise score as predictors of mortality in patients referred for exercise ECG. JAMA 284:1392–1398PubMedCrossRefGoogle Scholar
  15. 15.
    Vivekananthan DP, Blackstone EH, Pothier CE, Lauer MS (2003) Heart rate recovery after exercise is a predictor of mortality, independent of the angiographic severity of coronary disease. J Am Coll Cardiol 42:831–838PubMedCrossRefGoogle Scholar
  16. 16.
    Aktas MK, Ozduran V, Pothier CE et al (2004) Global risk scores and exercise testing for predicting all-cause mortality in a preventive medicine program. JAMA 292:1462–1468PubMedCrossRefGoogle Scholar
  17. 17.
    Tiukinhoy S, Beohar N, Hsie M (2003) Improvement in heart rate recovery after cardiac rehabilitation. J Cardiopulm Rehabil 23:84–87PubMedCrossRefGoogle Scholar
  18. 18.
    Redwood DR, Rosing DR, Epstein SE (1972) Circulatory and symptomatic effects of physical training in patients with coronary artery disease and angina pectoris. N Engl J Med 286:959–965PubMedCrossRefGoogle Scholar
  19. 19.
    May GA, Nagle FJ (1984) Changes in rate-pressure product with physical training of individuals with coronary artery disease. Phys Ther 64:1361–1366PubMedGoogle Scholar
  20. 20.
    Fletcher GF, Balady GJ, Amsterdam EA et al (2001) Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation 104:1694–1740PubMedGoogle Scholar
  21. 21.
    Froelicher VF, Jensen D, Genter F et al (1984) A randomized trial of exercise training in patients with coronary heart disease. JAMA 252:1291–1297PubMedCrossRefGoogle Scholar
  22. 22.
    Myers J, Froelicher VF (1990) Predicting outcome in cardiac rehabilitation. Am J Cardiol 15:983–985CrossRefGoogle Scholar
  23. 23.
    Hammond HK, Kelly TL, Froelicher VF, Pewen W (1985) Use of clinical data in predicting improvement in exercise capacity after cardiac rehabilitation. J Am Coll Cardiol 6:19–26PubMedCrossRefGoogle Scholar
  24. 24.
    Fioretti P, Simoons ML, Zwiers G et al (1987) Value of predischarge data for the prediction of exercise capacity after cardiac rehabilitation in patients with recent myocardial infarction. Eur Heart J 8:33–38PubMedGoogle Scholar
  25. 25.
    Van Dixhoorn J, Duivenvoorden HJ, Pool J (1990) Success and failure of exercise training after myocardial infarction: is the outcome predictable? J Am Coll Cardiol 15:974–982PubMedCrossRefGoogle Scholar
  26. 26.
    Heldal M, Sire S, Sandvik L, Dale J (1996) Simple clinical data are useful in predicting effect of exercise training after myocardial infarction. Eur Heart J 17:1821–1827PubMedGoogle Scholar
  27. 27.
    Digenio AG, Noakes TD, Cantor A et al (1997) Predictors of exercise capacity and adaptability to training in patients with coronary artery disease. J. Cardiopulm Rehabil 17:110–120PubMedCrossRefGoogle Scholar
  28. 28.
    Brezinka V, Dusseldorp E, Maes S (1998) Gender differences in psychosocial profile at entry into cardiac rehabilitation. J Cardiopulmon Rehabil 18:445–449CrossRefGoogle Scholar
  29. 29.
    Con AH, Linden W, Thompson JM, Ignaszewski A (1999) The psychology of men and women recovering from coronary artery bypass surgery. J Cardiopulmon Rehabil 19:152–161CrossRefGoogle Scholar
  30. 30.
    Rozanski A, Blumenthal JA, Kaplan J (1999) Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation 99:2192–2217PubMedGoogle Scholar
  31. 31.
    Glazer KM, Emery CF, Frid DJ, Banyasz RE (2002) Psychological predictors of adherence and outcomes among patients in cardiac rehabilitation. J Cardiopulm Rehabil 22:40–46PubMedCrossRefGoogle Scholar
  32. 32.
    Ades P, Maloney A, Savage P, Carhart RL (1999) Determinants of physical functioning in coronary patients. Arch Intern Med 159:2357–2360PubMedCrossRefGoogle Scholar
  33. 33.
    Lisboa PJG (2002) A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Network 15:11–39CrossRefGoogle Scholar
  34. 34.
    Mobley BAP, Leasure RR, Davidson LRNP (1995) Artificial neural network predictions of lengths of stay on a post-coronary care unit. Heart Lung 24:251–256PubMedCrossRefGoogle Scholar
  35. 35.
    Gaetz M, Iverson GL, Rzempoluck EJ et al (2004) Self-organizing neural network analyses of cardiac data in depression. Neuropsychobiology 49: 0–37CrossRefGoogle Scholar
  36. 36.
    Gulati M, Pandey DK, Arnsdorf MF et al (2003) Exercise capacity and the risk of death in women: the St James Women Take Heart Project. Circulation 108:1554–1559PubMedCrossRefGoogle Scholar
  37. 37.
    Buscema M (2002) A brief overview and introduction to artificial neural networks. Subst Use Misuse 37:1093–1148PubMedCrossRefGoogle Scholar
  38. 38.
    Buscema M (2004) Genetic doping algorithm (GenD): theory and applications. Expert Systems 21:63–80CrossRefGoogle Scholar
  39. 39.
    Comoss PRNBS (2002) The utility and viability of outcome measurement and monitoring in cardiac rehabilitation. J Cardiopulm Rehabil 22:334–337PubMedCrossRefGoogle Scholar
  40. 40.
    Spielberger CD, Gorusch RL, Lushene R (1983) Manual for the State-Trait Anxiety Inventory (STAI). Consulting Psychologists Palo Alto, CaliforniaGoogle Scholar
  41. 41.
    Eysenck HJ, Eysenck SBG (1975) Manual of the Eysenck Personality Questionnaire. Hodder & Stoughton, LondonGoogle Scholar
  42. 42.
    Sanavio E, Bertolotti G, Michielin P et al (1986) CBA-2,0 Scale Primarie. Una batteria a vasto spettro per l’assessment psicologico. Organizzazioni Speciali, FirenzeGoogle Scholar
  43. 43.
    Hodgson RJ, Rachman S (1977) Obsessional-compulsive complaints. Behav Res Ther 15:389–395PubMedCrossRefGoogle Scholar
  44. 44.
    American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn (DSM-IV). American Psychiatric Association, WashingtonGoogle Scholar
  45. 45.
    Bruce RA, Kusumi F, Hosmer D (1973) Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J 85:546–562PubMedCrossRefGoogle Scholar
  46. 46.
    American College of Sports Medicine (2000) ACSM’s guidelines for exercise testing and prescription., Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  47. 47.
    Fleg JL, Pina IL, Balady GJ et al (2000) Assessment of functional capacity in clinical and research applications: an advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology. Circulation 102:1591–1597PubMedGoogle Scholar
  48. 48.
    Kaminsky LA, Whaley MH (1998) Evaluation of new standardized ramp protocol: the BSU/Bruce ramp protocol. J Cardiopulm Rehab 18:438–434CrossRefGoogle Scholar
  49. 49.
    Ashley EA, Myers J, Froelicher V (2000) Exercise testing in clinical medicine. Lancet 356:1592–1597PubMedCrossRefGoogle Scholar
  50. 50.
    Myers J, Buchanan N, Walsh D et al (1991) Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol 17:1334–1342PubMedCrossRefGoogle Scholar
  51. 51.
    Mark DB, Shaw L, Harrell FE Jr et al (1991) Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med 325:849–853PubMedCrossRefGoogle Scholar
  52. 52.
    Roger VL, Jacobsen SJ, Pellikka PA et al (1998) Prognostic value of treadmill exercise testing: a population-based study in Olmsted County, Minnesota. Circulation 98:2836–2841PubMedGoogle Scholar
  53. 53.
    Buscema M and The Semeion Group (1999) Artificial neural networks and complex social systems. Franco Angeli Publisher, MilanGoogle Scholar
  54. 54.
    Kohonen T (1990) Cortical maps. Nature 346:24PubMedCrossRefGoogle Scholar
  55. 55.
    Kohonen T (1999) Comparison of SOM point densities based on different criteria. Neural Comput 11:2081–2095PubMedCrossRefGoogle Scholar
  56. 56.
    Kiang MY, Kumar A (2001). An evaluation of Self-Organizing Map networks as a robust alternative to factor analysis in data mining applications. Information Systems Research 12:117–194CrossRefGoogle Scholar
  57. 57.
    Dietterich TG (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10: 1895–923PubMedCrossRefGoogle Scholar
  58. 58.
    Medalie JH (1990) Angina pectoris: a validation of the biopsychosocial model. J Fam Pract 30:273–280PubMedGoogle Scholar
  59. 59.
    Anderson NB, McNeilly M, Myers HF (1993) A biopsychosocial model of race differences in vascular reactivity. In: Blascovich JJ, Katkin ES (eds). Cardiovascular reactivity to psychological stress & disease. APA science volumes. American Psychological Association, Washington, DC, pp 83–108CrossRefGoogle Scholar
  60. 60.
    Gatchel RJ (2004) Comorbidity of chronic pain and mental health disorders: the biopsychosocial perspective. Am Psychol 59:795–805PubMedCrossRefGoogle Scholar
  61. 61.
    Dumont S, Deshaies G, Dube C (1992) Toward a biopsychosocial understanding of the etiology of coronary disease and its development following a heart attack. Canadian Journal of Counselling 26:41–56Google Scholar
  62. 62.
    Hermann-Lingen C (2000) Biopsychosocial factors in pathogenesis and manifestation of coronary heart disease. Z Psychosom Med Psychother 46:315–330CrossRefGoogle Scholar
  63. 63.
    Stineman MG (2001). A model of health environmental integration. Topics in Stroke Rehabilitation 8:34–45PubMedCrossRefGoogle Scholar
  64. 64.
    Siebens H (2002) The Domain Management Model: organizing care for stroke survivors and other persons with chronic disease. Topics in Stroke Rehabilitation 9:1–25PubMedGoogle Scholar
  65. 65.
    Blumenthal JA, Sherwood A, Gullette E et al (2002) Biobehavioral approaches to the treatment of essential hypertension. J Consult Clin Psychol 70:569–589PubMedCrossRefGoogle Scholar
  66. 66.
    Spielberger CD, Vagg PR (1984) Psychometric properties of the STAI: a reply to Ramanaiah, Franzen, and Schill. J Person Assess 48:95–97CrossRefGoogle Scholar
  67. 67.
    Spielberger CD (1985) Assessment of state and trait anxiety: conceptual and methodological issues. Southern Psychologist 2:6–16Google Scholar
  68. 68.
    Spielberger CD, Sydeman S (1994) State-Trait Anxiety Inventory and State-Trait Anger Expression Inventory. In: Maruish ME (ed) The use of psychological testing for treatment planning and outcome assessment. Lawrence Erlbaum Associates, Hillsdale, pp 292–321Google Scholar
  69. 69.
    Spielberger CD, Sydeman S, Owen AE, Marsh BJ (1999) Measuring anxiety and anger with the State-Trait Anxiety Inventory (STAI) and the State-Trait Anger Expression Inventory (STAXI). In: Maruish ME (ed) The use of psychological testing for treatment planning and outcomes assessment (2nd ed). Lawrence Erlbaum Associates, Mahwah, pp 993–1021Google Scholar
  70. 70.
    McDonald RJ, Spielberger CD (1983) Measuring anxiety in hospitalized geriatric patients. Series in Clinical & Community Psychology: Stress & Anxiety 2:135–143.Google Scholar
  71. 71.
    Bonke B, Smorenburg JM, van der Ent C, Spielberger CD (1987) Evidence of denial and item-intensity specificity in the State-Trait Anxiety Inventory. Personality & Individual Differences 8:185–191CrossRefGoogle Scholar
  72. 72.
    Frasure-Smith N, Lesperance F, Talajic M (1995) Depression and 18-month prognosis after myocardial infarction. Circulation 91:999–1005PubMedGoogle Scholar
  73. 73.
    Frasure-Smith N, Lesperance F, Talajic M (1995) The impact of negative emotions on prognosis following myocardial infarction: is it more than depression? Health Psychol 14:388–398PubMedCrossRefGoogle Scholar
  74. 74.
    Bush DE, Ziegelstein RC, Tayback M et al (2001) Even minimal symptoms of depression increase mortality risk after acute myocardial infarction. Am J Cardiol 88:337–341PubMedCrossRefGoogle Scholar
  75. 75.
    Carney RM, Blumenthal JA, Catellier D et al (2003) Depression as risk factor for mortality after acute myocardial infarction. Am J Cardiol 92:1277–1281PubMedCrossRefGoogle Scholar
  76. 76.
    Frasure-Smith N, Lesperance F, Talajic M (1993) Depression following myocardial infarction. Impact on 6-month survival. JAMA 270:1819–1825PubMedCrossRefGoogle Scholar
  77. 77.
    Mitchell P, Norman J, Powell LH et al (2003) Effects of treating depression and low perceived social support on clinical events after myocardial infarction: the Enhancing Recovery in Coronary Heart Disease Patients (ENRICHD) Randomized Trial. JAMA 289:3106–3116PubMedCrossRefGoogle Scholar
  78. 78.
    Parmet S, Glass TJ, Glass RM (2004) Obsessive-compulsive disorder. JAMA 292:2040PubMedCrossRefGoogle Scholar
  79. 79.
    Summerfeldt LJ, Kloosterman P, Antony MM et al (2004) The relationship between miscellaneous symptoms and major symptom factors in obsessive-compulsive disorder. Behav Res Ther 42:1453–1467PubMedCrossRefGoogle Scholar
  80. 80.
    Pollak J (1979) Obsessive-compulsive personality: a review. Psychol Bull 2:225–241CrossRefGoogle Scholar
  81. 81.
    Diaferia G, Bianchi I, Bianchi ML et al (1997) Relationship between obsessive-compulsive personality disorder and obsessive-compulsive disorder. Compr Psychiatry 38:38–42PubMedCrossRefGoogle Scholar
  82. 82.
    Weber H, Wiedig M, Freyer J, Gralher J (2004) Social anxiety and anger regulation. European Journal of Personality 18:573–590CrossRefGoogle Scholar
  83. 83.
    Westenberg H, Liebowitz MR (2004) Overview of panic and social anxiety disorders. J Clin Psychiatry 65:22–26PubMedCrossRefGoogle Scholar
  84. 84.
    Cottraux J (2005) Recent developments in research and treatment for social phobia (social anxiety disorder). Curr Opin Psychiatry 18:51–54PubMedGoogle Scholar
  85. 85.
    Stoney CM, Engebretson TO (1994) Anger and hostility: potential mediators of the sex differences in coronary heart disease. In: Smith T, Siegman A (eds) Anger, hostility and the heart. Erlbaum, Hillsdale, pp 215–237Google Scholar
  86. 86.
    Bairey Merz CN, Kelsey SF, Pepine CJ et al (1999) The Women’s Ischemia Syndrome Evaluation (WISE) study. J Am Coll Cardiol 33:1453–1461CrossRefGoogle Scholar
  87. 87.
    Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women. JAMA 288:321–333CrossRefGoogle Scholar
  88. 88.
    Benz Scott LA, Ben-Or K, Allen JK (2002) Why are women missing from outpatient cardiac rehabilitation programs? J Womens Health 11:773–790CrossRefGoogle Scholar
  89. 89.
    Wulsin LR, Singal BM (2003) Do depressive symptoms increase the risk for the onset of coronary disease? Psychosom Med 65:201–210PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • E. Grossi
    • 1
  • A. Compare
  • E. Molinari
  1. 1.Pharma DepartmentBracco SpAMilano

Personalised recommendations