Skip to main content
  • 1144 Accesses

Abstract

External fixation is amethod for treating bone and joint injuries as well as for correcting skeletal deformities by attaching bones to an external device that stabilizes the injured limb. Additionally, it allows manipulation of the limb segments to achieve restoration of length and alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beidik OV, Butovsky KG, Ostrovsky NV, Lyasnikov VN (2002) External transosseous osteosynthesis modeling. Tesar-Izdat, Saratov

    Google Scholar 

  2. Karlov AV, Khlusov IA (2000) Adjustable cellular and tissue actions of optimum biomechanics of external fixation devices. In: Proceedings of the scientific-practical conference: RSC “RTO”, vol 2, Kurgan, pp 185–186

    Google Scholar 

  3. Karlov AV (2003) Regulator mechanisms of optimal biomechanics in external fixation system (dissertation). RSC “RTO”, Kurgan

    Google Scholar 

  4. Agadzhanian VV, Pronskih AA, Ustyantseva IM et al (2003) Polytrauma. Nauka, Novosibirsk

    Google Scholar 

  5. Moroni A, Faldini C, Marchetti S et al (2001) Fixation in osteoporotic bone using hydroxyapatite-coated tapered external fixation pins — a prospective randomized study in wrist fractures (abstract). In: Proceedings of the Fifth Congress of the European Federation of National Associations of Orthopaedics and Traumatology, Greece, p 120

    Google Scholar 

  6. Caja VL, Piza G, Navarro A (2003) Hydroxyapatite coating of external fixation pins to decrease axial deformity during tibial lengthening for short stature. J Bone Joint Surg Am 85-A:1527–1531

    PubMed  Google Scholar 

  7. Golubev GSh (1997) Ilizarov’s external fixator computer control in clinical conditions. SKNC VSH, Rostov-on-Don

    Google Scholar 

  8. Pichkhadze IM (1994) Some of the theoretical grounds of osteosynthesis and its practical realization with computer aid. Vestnik travmatologii i ortopedii imeni Priorova (Priorov bulletin of traumatology and orthopedics-PBTO) 3:9–13

    Google Scholar 

  9. Slobodsky AB (2002) Optimization of treatment of long bones fractures of the lower extremities with the help of computer technologies (Abstracts). In: Proceedings of the Congress “People and his health”. Ed. Kornilov N.V., Saint Petersburg, p 102

    Google Scholar 

  10. Shevtsov VI, Nemkov VA, Sklyar LV (1995) Ilizarov apparatus. Biomechanics. Periodika, Kurgan

    Google Scholar 

  11. Shtarker H, Volpin G, Stolero J et al (2002) Computerized tomography malalignment test for planning and correction of combined planar and rotational lower limb deformities by the Ilizarov method. In: Proceedings of the SICOT/SIROT XXII World Congress, San Diego, USA, p 72

    Google Scholar 

  12. Cherkashin A, Hong Lin, Birch I, Samchukov M (2002) Preventing axial deviation complications during deformity correction using “LegPerfect” planning system. In: Proceedings of the SICOT/SIROT XXII World Congress, San Diego, USA, p 244

    Google Scholar 

  13. Morandi M (2003) Taylor spatial frame. Minerva Ortop Traumatol 54:54–56

    Google Scholar 

  14. Al-Sayyad M (2004) The Taylozarov: an easy and precise technique to achieve residual deformity correction. In: Proceedings of the Third Meeting of the International Association for the Study and Application of the Method of Ilizarov, Istanbul, p 258

    Google Scholar 

  15. Atef H, Qaddoumi J, Whately C (2004) Acute tibial fractures treated with the Taylor spatial frame. In: Proceedings of the Third Meeting of the International Association for the Study and Application of the Method of Ilizarov, Istanbul, p 358

    Google Scholar 

  16. Binski J (2004) New devices. In: Proceedings of the Third Meeting of the International Association for the Study and Application of the Method of Ilizarov, Istanbul, p 61

    Google Scholar 

  17. Krause N, Mendicino R, Shimada K et al (2004) Computer-aided bone distraction. US Patent no. 6,701,174 B1

    Google Scholar 

  18. Glozman Z, Liram M, Eidelman M (2004) Computer assisted program for planning of the Taylor spatial frame. In: Proceedings of the Third Meeting of the International Association for the Study and Application of the Method of Ilizarov, Istanbul, p 260

    Google Scholar 

  19. Kontes VD (1998) The method of remote reduction at tibial close fractures and device for its implementation. Patent no. 2165742, Russian Federation. Applied 26.03.1996, published 27.07.1998

    Google Scholar 

  20. Shevtsov VI, Popkov AV, Burlakov EV, Rutz FJ (1993) Operative lengthening of femur by Ilizarov with use of automatic distraction/The information methodical letter. RSC “RTO”, Kurgan, p 17

    Google Scholar 

  21. Shevtsov VI, Shchudlo MM, Utkin VA, Erofeev SA (1996) Mathematical modelling of distraction osteogenesis. Genij Ortopedii 1:6–13

    Google Scholar 

  22. Shevtsov VI, Popkov AV (1998) Operative lengthening of lower extremities. Meditsina, Moscow

    Google Scholar 

  23. Popkov AV, Shevtsov VI (2001) Achondroplasia. Meditsina, Moscow

    Google Scholar 

  24. Solomin LN, Kondratiev AS, Mitrenin VB et al (2004) The automated manipulator for reduction of bone fragments. GNTSR “TSNII RTK”, Saint-Petersburg

    Google Scholar 

  25. Kaplunov OA (2002) Transosseous osteosynthesis according Ilizarov in traumatology and orthopedy. GEOTAR-MED, Moscow, 304 p.

    Google Scholar 

  26. Shved SI, Sysenko Yu M (1997) The methods of bone fragment control in the treatment of patients with closediaphyseal comminuted fractures of long bones. Geniy Ortopedii 1:41–44

    Google Scholar 

  27. Shevtsov VI, Shved SI, Sisenko JM (2002) Transosseous osteosynthesis in treatment of comminuted fractures. ZAO“Dammi”, Kurgan, 326 p.

    Google Scholar 

  28. Adamovich IS (1985) Mathematical modeling of the wire and evaluation of binding and metal plasticity for rigidity for compressive-distractive apparatus. In: Kalnberz VK (ed) Apparatus and methods of external fixation in traumatology and orthopaedics, vol 3. Riga, pp 7–11

    Google Scholar 

  29. Evseev VI, Korepanov MG (1988) Biomechanic modeling of osteosynthesis. In: Kalnberz VK (ed) Modern problems of biomechanics, vol 5. Zinatne, Riga, pp 73–93

    Google Scholar 

  30. Blokha AG (1992) Mathematical modeling of system “apparatus-extremity segment” at transosseous compression-distraction osteosynthesis. In: Biomechanics for protection of life and health of man. Nizhni Novgorod, pp 28–29

    Google Scholar 

  31. Begun PI, Afonin PN (2002) Computer modeling inbiomechanics. The Manual. SPbGETU, St. Petersburg, 72 p.

    Google Scholar 

  32. Novitskaja NV, Stakheev IA (1975) Device for Ilizarov frame for definition of bone fragment mobility in external fixation. Ortopedija, Travmatologija i Protezirivanije 4:75–76

    Google Scholar 

  33. Karptsov VI (1975) Objective methods of monitoring during bone fractures treatment using external fixation (PhD thesis). LITO, Leningrad, 163 p.

    Google Scholar 

  34. Morgun VV (1986) Acoustoemissive method of biomechanical modes validation in external fixation apparatus. In: Advances of biomechanics in medicine. Proceedings of an international symposium, vol 3. RITO, Riga, pp 578–583

    Google Scholar 

  35. Morgun VV (1989) Transosseous compression-distraction osteosynthesis of bone fractures in conditions of a controllable biomechanical mode (Abstract of PhD thesis). KhNIITO, Kharkov, 22 p.

    Google Scholar 

  36. Shchurov VA, Gorbachev LJ (1998) Estimation of micromobility of bone fragments. In: Proceedings of the 4th Russian conference on biomechanics “Biomechanics-98”, Nizhni Novgorod, p 229

    Google Scholar 

  37. Kornilov NV, Samojlov KA, Karptsov VI (1989) The condition of reparative osteogenesis in patients with femur fractures using wire-pin external fixation. Vestnik Hirurgii imeni I.I. Grekova 1:66–68

    Google Scholar 

  38. Pustovojt MI, Kotskovich IM, Strutinsky JI (1993) Ilizarov distraction regenerate training with the help of controlled mechanical-dynamical influences. Ilizarov method: achievements and prospects. In: Proceedings of the international conference, devoted to the memory of the academician GA Ilizarov. RSC“RTO”, Kurgan, pp 225–226

    Google Scholar 

  39. Popsujshapka AK (1991) Functional treatment of shaft long bone fractures (clinical and an experimental research) (PhD thesis). KhNIITO, Kharkov, 323 p.

    Google Scholar 

  40. Ozhegov SI (1997) Explanatory dictionary of the Russian language. Azbukovnik, Moscow

    Google Scholar 

  41. Dulaev AK, Didikin AV (1999) Experimental development and substantiation of a method of “hybrid” osteosynthesis. In: Proceedings of the Conference“ Modern technologies in traumatology and orthopedy”. CITO, Moscow, p 69

    Google Scholar 

  42. Rajasekaran S (1999) Hybrid fixation of complex tibial plateau fractures. In: Proceedings of the 21st Triennial World Congress of the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT), Sydney, p 605

    Google Scholar 

  43. Zeiler C (1999) Treatment of bone loss with an central wire distraction system controlled and regulated by tensile forces in vivo. In: Proceedings of the 21st Triennial World Congress of the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT), Sydney, p 151

    Google Scholar 

  44. Jacques E Jr (1999) Treatment of pseudarthrosis Ilizarov method. In: Proceedings of the 21st Triennial World Congress of the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT), Sydney, p 153

    Google Scholar 

  45. Pizzoli AL, Giotakis N, Lavini FM et al (2001) The use of Orthofix Hybridexternal fixator in the treatment of proximal and distal meta-epiphyseal lesions of the tibia. Fifth Congress of EFORT, Greece, p 51

    Google Scholar 

  46. Demjanov VM, Dager NM, Abeleva GM (1986) Modern aspects of forearm closed shaft fractures treatment. Ortopedija, Travmatologija i Protezirivanije 12:57–61

    Google Scholar 

  47. Mamonov JP (1987) Combined osteosynthesis in shaft bone fractures. Vestnik khirurgii imeni I.I. Grekova1, pp 100–101

    Google Scholar 

  48. Sukhonosenko VM (1995) Surgical treatment of femoral bone mal-union complicated by extension knee joint contracture. In: Proceedings of the conference. “Actual problems of traumatology and orthopedy”. CITO, Moscow, pp 76–78

    Google Scholar 

  49. Tajlashev MM, Rahmatulin AG, Salatin PP, Puseva ME (1995) To a problem of operative treatment of shaft forearmfractures. Ortopedija i Travmatilogija Rossii 4:35–36

    Google Scholar 

  50. Gjulnazarova SV (2000) Modern methods of nonunion treatment. Ortopedija i Travmatilogija Rossii 1:78–83

    Google Scholar 

  51. Inan M, Karaoglu S, Türk CY, Argün M (1999) Overnailing Ilizarovmethod for treatment of nonunions after intramedullary nailing in femoral fractures. In: Proceedings of the 21st Triennial World Congress of the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT), Sydney, p 221

    Google Scholar 

  52. Murase T, Kishida Y, Hiroshima K (1999) Intrafocal pinning combined with external fixation for distal radial fractures: a preliminary report. In: Proceedings of the 21st Triennial World Congress of the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT), Sydney, p 188

    Google Scholar 

  53. Krupko IL (1974) Traumatology and orthopedy, vol 1. Meditsina, Leningrad, 424 p.

    Google Scholar 

  54. Ternovoj KS, Sinilo MI (1987) Mistakes and complications in traumatology and orthopedy. Mova, Kiev, 287 p.

    Google Scholar 

  55. Kljuchevskij VV, Suhanov GA, Zverev EV et al (1993) Osteosynthesis using rectangular-section nails. “ORTOPRO”, Yaroslavl, 322 p.

    Google Scholar 

  56. Viktorova NL (1995) Examination of treatment of long bone shaft fractures. Annali travmatologii i ortopedii 1:8–10

    Google Scholar 

  57. Kotenko VV, Korniliv NV, Kopisova VA et al (1996) Osteosynthesis using devices with thermomechanical memory. In: Kotenko VV (ed) Compression clips and circular clamps, part I. AO“Novokuznetskij Poligrafkombinat”, Novokuznetsk, 94 p.

    Google Scholar 

  58. Bogdanovich UJ (1981) Plate osteosynthesis. Meditsina, Leningrad, 146 p.

    Google Scholar 

  59. Vvedenskij SP (1983) Classification of compression-distraction devices and some technical development of new frames. In: Proceedings of the Conference “Invention and an efficiency work in traumatology and orthopedy”. CITO, Moscow, pp 50–54

    Google Scholar 

  60. Ilizarov GA (1976) Clinical and theoretical aspects compression and distraction osteosynthesis. In: Proceedings of the All-Union scientific-practical Conference “Theoretical and practical aspects of transosseous osteosynthesis”. RSC “RTO”, Kurgan, pp 7–11

    Google Scholar 

  61. Devjatov AA (1990) Transosseous osteosynthesis. Shtiintca, Kishinev, 316 p.

    Google Scholar 

  62. Kovalenko IL, Davydov AB, Belyh SI (1990) Combined osteosynthesis with application of biocompatible polymeric clamps in treatment of long bone fractures. Ortopedija, Travmatologija i Protezirivanije 7:11–15

    Google Scholar 

  63. Antoniadi JV, Runkov AV, Shlykov IL, Mukhachjov VA (1999) Combined osteosynthesis in pelvis injury. Actual questions of traumatology and orthopedy. GFUN “UNIITO”, Ekaterinburg, pp 8–12

    Google Scholar 

  64. Kotelnikov GP, Bezrukov AE, Volova LT, Nagoga AG (1995) Use of demineralised bone graft in treatment of hip fractures at elderly and senile patients. Annali traumatologii i ortopedii 1:48–52

    Google Scholar 

  65. Zulkarneev RA (1986) Combined osteosynthesis and its biomechanical substantiation. In: Kalnberz VK (ed) Medical biomechanics, vol 3. RITO, Riga, pp 469–474

    Google Scholar 

  66. Zulkarneev RA, Zulkarneev RR (2001) Combined osteosynthesis in osteoporotic fractures. In: Proceedings of the international Conference “Treatment of damages and diseases of pelvis bones”. UNIITO, Ekaterinburg-Revda, pp 115–116

    Google Scholar 

  67. Janson IA, Adamovich IS, Mastinja MO (1983) Basic factors influencing quantity of initial wire tension in devices of external fixation. Questions of biomechanics and rehabilitation. RITO, Riga, pp 109–118

    Google Scholar 

  68. Janson IA, Janson HA (1985) Some questions of biomechanics of external fixation: In: Kalnberz VK (ed) Devicesand methods of external fixing in traumatology, vol 3. RITO, Riga, pp 78–80

    Google Scholar 

  69. Kalnberz VK, Janson IA (1986) Basic features of “wire” external fixation device biomechanics. In: Proceedings of the international Conference “Medical biomechanics”, vol 2. RITO, Riga, pp 475–480

    Google Scholar 

  70. Kalnberz VK, Adamovich IS, Perper MI, Janson IA (1988) Strained and deformed condition of a wire of external fixation device with rigid rings. In: Kalnberz VK (ed) Biomechanics: problems and researches. RITO, Riga, pp 198–203

    Google Scholar 

  71. Huisres R, Chao EY (1985) Guidelines for external fracture fixation frame rigidity and strength. Devices and methods of external fixation in traumatology and orthopedy, vol 3. RITO, Riga, pp 63–65

    Google Scholar 

  72. Vasilenkajtis VV (1985) Biomechanical substantiation of compression-distraction osteosynthesis using “elastic-strained suspended path”. In: Janson IA (ed) Medical biomechanics, vol 3. RITO, Riga, pp 428–434

    Google Scholar 

  73. Kalnberz VK, Studers PJ, Dobelis MA (1988) Comparative research of Kirshner-wires, Steinmann rods and Shants-screws rigidity in identical experimental conditions and in clinic. Ortopedija, Travmatologija i Protezirivanije1 2:16–19

    Google Scholar 

  74. Tishkov NV (1995) Treatment of closed tibia shaft fractures using a method of transosseous osteosynthesis in region with small population density (Abstract of PhD thesis). IITO, Irkutsk, 20 p.

    Google Scholar 

  75. Solomin LN (1996) The controlled combined osteosynthesis of long bones: development, substantiation and clinical use (PhD thesis). IITO, Irkutsk, 348 p.

    Google Scholar 

  76. Evseeva SA, Solomin LN, Barabash AP (1996) Theoretical and experimental substantiation of support for a tension of axial compression wires rigidity in the combined strained fixation. The Bulletin of the Siberian branch of Russian Academy of Medical Science 4:18–20

    Google Scholar 

  77. Bejdik OV, Kireev SI (2000) Ways of a method of transosseous osteosynthesis according to GA Ilizarov optimization in treatment of orthopedic patients (Abstracts of a scientific conference), vol 1. RSC “RTO”, Kurgan, p 29

    Google Scholar 

  78. Shukejlo JA, Pechkurov AL, Kormilitsin OP (2000) Experimental research of gunshot fractures stability In: Proceedings of the Fifth All-Russia biomechanics Conference “Biomechanics-2000”. NNIITO, Nizhni Novgorod, p 140

    Google Scholar 

  79. Luvsan G (1990) Traditional andmodern aspects of Eastern reflexotherapy, 2nd edn. Nauka, Moscow

    Google Scholar 

  80. Volkov MV, Oganesyan OV (1986) Restoration of the configuration and function of joints and bones (using author’s devices). Medicine, Moscow, 256 p.

    Google Scholar 

  81. Nechushkin AI, Oganesjan OV, Novikova EB (1976) About the reason of occurrence and the prevention of some complications in using of external fixation devices (the preliminary report). In: Actual questions of traumatology and orthopedy, vol 14. CITO, Moscow, pp 29–32

    Google Scholar 

  82. Shpilevsky IE, Tesakov DK, Lipov AL (1994) Prophylaxis of soft-tissue inflammation around of wires in external fixation devices. In: Modern aspects of traumatology and orthopedy. KNIITO, Kazan, pp 110–111

    Google Scholar 

  83. Prokin BM, Dedeneva ZhG (1994) Some aspects of medical rehabilitation in Turner-Zudek syndrome. Travmatologia i ortopedia Rossii 1:92–97

    Google Scholar 

  84. Verkhozina TK, Solomin LN, Shevchenko VV (1998) Analysis of results of transosseous element insertion through biological-active points. In: Proceedings of the First International Pacific Congress on Traditional Medicine, VGMU, Vladivostok, pp 74–75

    Google Scholar 

  85. Ivannikov SV, Oganesjan OV, Shesternja NA (2003) External transosseous osteosynthesis in forearm fractures. BINOM, Moscow, 140 p.

    Google Scholar 

  86. Khrupkin VI, Artemiev AA, Popkov VV et al (2004) Ilizarov method in treatment of diaphyseal fractures of lower leg. GEOTAR-MED, Moscow

    Google Scholar 

  87. Oganesyan OV, Ivannikov SV, Korshunov AV (2003) The restoration of form and function of ankle joint by knuckle-and-distraction apparatus. BINOM, Meditsina, Moscow

    Google Scholar 

  88. Solomin LN, Yaichny OA, Zhirnov VA et al (2004) The influence of different methods of reflexotherapy on distraction regeneration in experimental study in rabbits. In: Present problems of traumatology and orthopedics. Velikij Novgorod, p 95

    Google Scholar 

Suggested Reading

  • Beidik OV, Sokulov IV (2000) Results of treatments of long bone diseases and injuries using external fixation devices with biocompatible implants. Newtech, Kurgan

    Google Scholar 

  • Burny FL (1999) Mechanical monitoring of fracture healing using external fixation (abstract). In: Proceedings of the 21st Triennial World Congress of the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT), Sydney, p 300

    Google Scholar 

  • Catagni MA (2002) Atlas for the insertion of transosseous wires and half-pins. Ilizarov Method. Medicalplastic, Milan

    Google Scholar 

  • Ilizarov GA (1992) Transosseous osteosynthesis. Theoretical and clinical aspects of the regeneration and growth of tissue. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Kalnbernz VK (1983) Improvement of external fixation apparatus. In: Volkov MV (ed) Invention and rationalization activity in traumatology and orthopedics. CITO, Moscow, pp 91–92

    Google Scholar 

  • Khrupkin VI, Artemiev AA, Popkov VV et al (2004) Ilizarov method in treatment of diaphyseal fractures of lower leg. GEOTAR-MED, Moscow

    Google Scholar 

  • Prokin BM, Dedeneva ZhG (1994) Some aspects of medical rehabilitation in Turner-Zudek syndrome. Travmatologia i ortopedia Rossii 1:92–97

    Google Scholar 

  • Shved SI, Sysenko Yu M (1997) The methods of bone fragment control in the treatment of patients with close diaphyseal comminuted fractures of long bones. Geniy Ortopedii 1:41–44

    Google Scholar 

  • Solomin LN (2004) Transosseous osteosynthesis. In: Kornilov NV, Gryaznukhin EG (eds) The traumatology and orthopedics (clinician’s guide), vol 1, chapter 5. Hippocrat, Saint-Petersburg, pp 336–388

    Google Scholar 

  • Solomin LN, Kondratiev AS, Mitrenin VB et al (2004) The automated manipulator for reduction of bone fragments. GNTSR “TSNII RTK”, Saint-Petersburg

    Google Scholar 

  • Solomin LN, Kornilov NV, Voitovich AV et al (2004) The uniform designation method of transosseous osteosynthesis (method guidance no. 2002/134). RR. Vreden RRITO, Saint-Petersburg

    Google Scholar 

  • Solomin LN, Yaichny OA, Zhirnov VA et al (2004) The influence of different methods of reflexotherapy on distraction regeneration in experimental study in rabbits. In: Tikhilov RM (ed) Present problems of traumatology and orthopedics. Velikij Novgorod, p 95

    Google Scholar 

  • Vvedensky SP (1978) Device for elimination of femur angular deformation. Travmatologia, ortopedia 8:71–72

    Google Scholar 

  • Vvedensky SP (1978) Thedevice for reposition of femur fragments (certificate of authorship no. 611612, USSR. Applied 25.06.1975, published 25.06.1978

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this chapter

Cite this chapter

(2008). General Aspects of External Fixation. In: The Basic Principles of External Fixation Using the Ilizarov Device. Springer, Milano. https://doi.org/10.1007/978-88-470-0513-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0513-6_1

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0512-9

  • Online ISBN: 978-88-470-0513-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics