Experimental Approaches to Composite Tissue Allograft Transplants

  • Maria Siemionow
  • Yalcin Kulahci

Abstract

Composite tissue allotransplantation has been recently introduced as a potential clinical treatment for complex reconstructive procedures, include traumatic injuries, cancer ablative surgeries, or extensive tissue loss secondary to burns. Composite tissue allografts (CTAs) consist of heterogeneous tissues derived from ectoderm and mesoderm, including skin, fat, muscle, nerves, lymph nodes, bone, cartilage, ligaments, and bone marrow, with different antigenicity. Thus, composite tissue structure is considered to be more immunogenic than solid organ transplants. While cartilage, ligaments, and fat present low antigenicity, bone, muscles, nerves, and vessels present moderate antigenicity, and skin is the component that develops the most severe rejection because of the abundance of dendritic cells within the epidermis and dermis. To study the mechanisms of CTA acceptance and rejection, different experimental models, strategies and different immunosuppressive protocols have used [1, 2].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee WP, Yaremchuk MJ, Pan YC et al (1991) Relative antigenicity of components of a vascularized limb allograft. Plast Reconstr Surg 87(3):401–411PubMedCrossRefGoogle Scholar
  2. 2.
    Cendales LC, Xu H, Bacher J et al (2005) Composite tissue allotransplantation: development of a preclinical model in nonhuman primates. Transplantation 80(10):1447–1454PubMedCrossRefGoogle Scholar
  3. 3.
    Lance EM, Inglis AE, Figarola F et al (1971) Transplantation of the canine hind limb. Surgical technique and methods of immunosuppression for allotransplantation. A preliminary report. J Bone Joint Surg Am 53(6):1137–1149PubMedGoogle Scholar
  4. 4.
    Jensen JN, Mackinnon SE (2000) Composite tissue allotransplantation: a comprehensive review of the literature — part 1. J Reconstr Microsurg 16(1):57–68PubMedGoogle Scholar
  5. 5.
    Shapiro RI, Cerra FB (1978) A model for reimplantation and transplantation of a complex organ: the rat hind limb. J Surg Res 24(6):501–506PubMedCrossRefGoogle Scholar
  6. 6.
    Palm J, Black G (1971) Interrelationships of inbred rat strains with respect to Ag-B and non-Ag-B antigens. Transplantation 11(2):184–189PubMedCrossRefGoogle Scholar
  7. 7.
    Gill TJ (1978) Report of the first international workshop on alloantigenic systems in the rat. Transplant Proc X:271Google Scholar
  8. 8.
    Doi K (1979) Homotransplantation of limbs in rats. A preliminary report on an experimental study with nonspecific immunosuppressive drugs. Plast Reconstr Surg 64(5):613–621PubMedCrossRefGoogle Scholar
  9. 9.
    Black KS, Hewitt CW, Fraser LA et al (1982) Cosmas and Damian in the laboratory. N Engl J Med 306(6):368–369PubMedCrossRefGoogle Scholar
  10. 10.
    Black KS, Hewitt CW, Fraser LA et al (1985) Composite tissue (limb) allografts in rats. II. Indefinite survival using low-dose cyclosporine. Transplantation 39(4):365–368PubMedCrossRefGoogle Scholar
  11. 11.
    Hewitt CW, Black KS, Fraser LA et al (1985) Composite tissue (limb) allografts in rats. I. Dose-dependent increase in survival with cyclosporine. Transplantation 39(4):360–364PubMedCrossRefGoogle Scholar
  12. 12.
    Press BH, Sibley RK, Shons AR (1986) Limb allotransplantation in the rat: extended survival and return of nerve function with continuous cyclosporin/prednisone immunosuppression. Ann Plast Surg 16(4):313–321PubMedCrossRefGoogle Scholar
  13. 13.
    Inceoglu S, Siemionow M, Chick L et al (1994) The effect of combined immunosuppression with systemic low-dose cyclosporin and topical fluocinolone acetonide on the survival of rat hind-limb allografts. Ann Plast Surg 33(1):57–65PubMedCrossRefGoogle Scholar
  14. 14.
    Arai K, Hotokebuchi T, Miyahara H et al (1989) Limb allografts in rats immunosuppressed with FK506. I. Reversal of rejection and indefinite survival. Transplantation 48(5):782–786PubMedCrossRefGoogle Scholar
  15. 15.
    Buttemeyer R, Jones NF, Min Z et al (1996) Rejection of the component tissues of limb allografts in rats immunosuppressed with FK-506 and cyclosporine. Plast Reconstr Surg 97(1):139–148; discussion 149–151PubMedCrossRefGoogle Scholar
  16. 16.
    Benhaim P, Anthony JP, Ferreira L et al (1996) Use of combination of low-dose cyclosporine and RS-61443 in a rat hindlimb model of composite tissue allotransplantation. Transplantation 61(4):527–532PubMedCrossRefGoogle Scholar
  17. 17.
    Muramatsu K, Doi K, Kawai S (1999) Limb allotransplantation in rats: combined immunosuppression by FK-506 and 15-deoxyspergualin. J Hand Surg [Am] 24(3):586–593CrossRefGoogle Scholar
  18. 18.
    Ustuner ET, Zdichavsky M, Ren X et al (1998) Long-term composite tissue allograft survival in a porcine model with cyclosporine/mycophenolate mofetil therapy. Transplantation 66(12):1581–1587PubMedCrossRefGoogle Scholar
  19. 19.
    Jones JW Jr, Ustuner ET, Zdichavsky M et al (1999) Long-term survival of an extremity composite tissue allograft with FK506-mycophenolate mofetil therapy. Surgery 126(2):384–388PubMedCrossRefGoogle Scholar
  20. 20.
    Lee WP, Rubin JP, Cober S et al (1998) Use of swine model in transplantation of vascularized skeletal tissue allografts. Transplant Proc 30(6):2743–2745PubMedCrossRefGoogle Scholar
  21. 21.
    Daniel RK, Egerszegi EP, Samulack DD et al (1986) Tissue transplants in primates for upper extremity reconstruction: a preliminary report. J Hand Surg [Am] 11:1–8Google Scholar
  22. 22.
    Stark GB, Swartz WM, Narayanan K et al (1987) Hand transplantation in baboons. Transplant Proc 19:3968–3971PubMedGoogle Scholar
  23. 23.
    Stevens HPJD, Hovius SER, Vuzevski VD et al (1990) Immunolojical aspects of allogeneic partial hand transplantation in the rhesus monkey. Transplant Proc 22:2006–2008PubMedGoogle Scholar
  24. 24.
    Gold ME, Randzio J, Kniha H et al (1991) Transplantation of vascularized composite mandibular allografts in young cynomolgus monkeys. Ann Plast Surg 26:125–132PubMedCrossRefGoogle Scholar
  25. 25.
    Mjornstedt L, Olausson M, Lindholm L et al (1987) Mechanisms maintaining transplantation tolerance in antithymocyte globulin-treated rats. Transplantation 44(5):669–673PubMedCrossRefGoogle Scholar
  26. 26.
    Gammie JS, Li S, Colson YL et al (1998) A partial conditioning strategy for achieving mixed chimerism in the rat: tacrolimus and anti-lymphocyte serum substantially reduce the minimum radiation dose for engraftment. Exp Hematol 26(10):927–935PubMedGoogle Scholar
  27. 27.
    Wood ML, Monaco AP, Gozzo JJ et al (1971) Use of homozygous allogeneic bone marrow for induction of tolerance with antilymphocyte serum: dose and timing. Transplant Proc 3(1):676–679PubMedGoogle Scholar
  28. 28.
    Siemionow M, Oke R, Ozer K et al (2002) Induction of donor-specific tolerance in rat hind-limb allografts under antilymphocyte serum and cyclosporine A protocol. J Hand Surg [Am] 27(6):1095–1103CrossRefGoogle Scholar
  29. 29.
    Ozer K, Gurunluoglu R, Zielinski M et al (2003) Extension of composite tissue allograft survival across major histocompatibility barrier under short course of anti-lymphocyte serum and cyclosporine a therapy. J Reconstr Microsurg 19(4):249–256PubMedCrossRefGoogle Scholar
  30. 30.
    Heidecke CD, Hancock WW, Jakobs F et al (1995) Alpha/beta-T cell receptor-directed therapy in rat cardiac allograft recipients. Treatment prior to alloantigen exposure prevents sensitization and abrogates accelerated rejection. Transplantation 59(1):78–84PubMedCrossRefGoogle Scholar
  31. 31.
    Siemionow M, Cunningham B, Ortak T (2000) A new model for induction of tolerance in composite tissue allografts combined limb-thymus transplantation. J Hand Surg [Br] 25[Suppl. 1]:50Google Scholar
  32. 32.
    Siemionow M, Ortak T, Izycki D (2002) Induction of tolerance in composite-tissue allografts. Transplantation 74(9):1211–1217PubMedCrossRefGoogle Scholar
  33. 33.
    Ozer K, Izycki D, Zielinski M et al (2004) Development of donor-specific chimerism and tolerance in composite tissue allografts under alphabeta-T-cell receptor monoclonal antibody and cyclosporine a treatment protocols. Microsurgery 24(3):248–254PubMedCrossRefGoogle Scholar
  34. 34.
    Siemionow MZ, Izycki DM, Zielinski M (2003) Donorspecific tolerance in fully major histocompatibility major histocompatibility complex-mismatched limb allograft transplants under an anti-alphabeta T-cell receptor monoclonal antibody and cyclosporine A protocol. Transplantation 27;76(12):1662–1668PubMedCrossRefGoogle Scholar
  35. 35.
    Ozer K, Oke R, Gurunluoglu R et al (2003) Induction of tolerance to hind limb allografts in rats receiving cyclosporine A and antilymphocyte serum: effect of duration of the treatment. Transplantation 75(1):31–36PubMedCrossRefGoogle Scholar
  36. 36.
    Siemionow M, Izycki D, Ozer K et al (2006) Role of thymus in operational tolerance induction in limb allograft transplant model. Transplantation 81(11):1568–1576PubMedCrossRefGoogle Scholar
  37. 37.
    Siemionow M, Ulusal BG, Ozmen S et al (2004) Composite vascularized skin/bone graft model: a viable source for vascularized bone marrow transplantation. Microsurgery 24(3):200–206PubMedCrossRefGoogle Scholar
  38. 38.
    Ozmen S, Ulusal BG, Ulusal AE et al (2006) Composite vascularized skin/bone transplantation models for bone marrow-based tolerance studies. Ann Plast Surg 56(3):295–300PubMedCrossRefGoogle Scholar
  39. 39.
    Siemionow M, Ozer K, Izycki D et al (2005) A new method of bone marrow transplantation leads to extension of skin allograft survival. Transplant Proc 37(5):2309–2314PubMedCrossRefGoogle Scholar
  40. 40.
    Siemionow MZ, Klimczak A, Unal S (2005) Different routes of donor-derived hematopoietic stem cell transplantation for donor-specific chimerism induction across MHC barrier. Transplant Proc 37(1):62–64PubMedCrossRefGoogle Scholar
  41. 41.
    Demir Y, Ozmen S, Klimczak A et al (2005) Strategies to develop chimerism in vascularized skin allografts across MHC barrier. Microsurgery 25(5):415–422PubMedCrossRefGoogle Scholar
  42. 42.
    Hewitt CW, Ramsamooj R, Patel MP et al (1990) Development of stable mixed T cell chimerism and transplantation tolerance without immune modulation in recipients of vascularized bone marrow allografts. Transplantation 50(5):766–772PubMedCrossRefGoogle Scholar
  43. 43.
    Lukomska B, Durlik M, Pienkowska B et al (1990) Transplantation of bone marrow with vascularized bone. Transplant Proc 22(5):2255–2256PubMedGoogle Scholar
  44. 44.
    Suzuki H, Patel N, Matthews M et al (2000) Vascularized bone marrow transplantation: A new surgical approach using isolated femoral bone/bone marrow. J Surg Res 89(2):176–183PubMedCrossRefGoogle Scholar
  45. 45.
    Santiago SF, de Faria W, Khan TF et al (1999) Heterotopic sternum transplant in rats: a new model of a vascularized bone marrow transplantation. Microsurgery 19(7):330–334PubMedCrossRefGoogle Scholar
  46. 46.
    Muramatsu K, Valenzuela RG, Bishop AT (2003) Detection of chimerism following vascularized bone allotransplantation by polymerase chain reaction using a Y-chromosome specific primer. J Orthop Res 21(6):1056–1062PubMedCrossRefGoogle Scholar
  47. 47.
    Siemionow M, Ozer K (2002) Advances in composite tissue allograft transplantation as related to the hand and upper extremity. J Hand Surg [Am] 27(4):565–580CrossRefGoogle Scholar
  48. 48.
    Siemionow M, Klimczak A, Unal S (2004) Different routes of donor derived hematopoietic stem cells transplantation for donor specific chimerism induction across MHC barrier. XX International Congress of The Transplantation Society, ViennaGoogle Scholar
  49. 49.
    Tai CY, France MA, Strande LF et al (2003) An extraperitoneal isolated vascularized bone marrow transplant model in the rat. Transplantation 75:1591PubMedCrossRefGoogle Scholar
  50. 50.
    Agaoglu G, Unal S, Siemionow M (2005). Transplantation of the vascularized bone allograft into the inguinal region. Plast Reconstr Surg 115(6):1794–1795PubMedCrossRefGoogle Scholar
  51. 51.
    Agaoglu G, Carnevale KA, Zins JE Siemionow M (2006). Bilateral vascularized femoral bone transplant: a new model of vascularized bone marrow transplantation in rats, part I. Ann Plast Surg 56(6):658–664PubMedCrossRefGoogle Scholar
  52. 52.
    Klimczak A, Agaoglu G, Carnevale KA, Siemionow M (2006) Applications of bilateral vascularized femoral bone marrow transplantation for chimerism induction. Ann Plast Surg [In press]Google Scholar
  53. 53.
    Yazici I, Unal S, Siemionow M (2005) Composite hemiface/calvarium transplantation model in rat. Plast Reconst Surg [In press]Google Scholar
  54. 54.
    Yazici I, Carnevale Kevin, Klimczak A, Siemionow M (2006) A new rat model of maxilla allotransplantation. Ann Plast Surg [In press]Google Scholar
  55. 55.
    Kulahci Y, Molski M, Siemionow M (2006) Development of the alternative composite tissue allograft transplantation models for reconstruction of the head and neck defects. 51st Annual Meeting of the Plastic Surgery Research Council. May 17–20, Dana Point, CaliforniaGoogle Scholar
  56. 56.
    Kulahci Y, Klimczak A, Siemionow M (2006) Development and maintenance of donor specific chimerism in semi-allogeneic major histocompatibility complex mismatched hemiface/mandible/tongue flap under low dose cyclosporine a treatment. The combined Meeting of the Ohio Valley and the Robert H. Ivy Societies of Plastic Surgeons. June 2–4, Pittsburgh, PennsylvaniaGoogle Scholar
  57. 57.
    Agaoglu G, Siemionow M (2005) Combined semimem-branosus muscle and epigastric skin flap: a new model of composite-free flap in the rat. Ann Plast Surg 55(3):310–315PubMedCrossRefGoogle Scholar
  58. 58.
    Ozer K, Zielinski M, Siemionow M (2003) New composite tissue allograft transplantation model in mouse with intravital microscopic evaluation of microcirculation. J Reconstr Microsurg 19(5):323–330PubMedCrossRefGoogle Scholar
  59. 59.
    Strome S, Sloman-Moll E, Samonte BR et al (1992) Rat model for a vascularized laryngeal allograft. Ann Otol Rhinol Laryngol 101(11):950–953PubMedGoogle Scholar
  60. 60.
    Lorenz RR, Dan O, Fritz MA et al (2002) Rat laryngeal transplant model: technical advancements and a redefined rejection grading system. Ann Otol Rhinol Laryngol 111(12 Pt 1):1120–1127PubMedGoogle Scholar
  61. 61.
    Akst LM, Siemionow M, Dan O et al (2003) Induction of tolerance in a rat model of laryngeal transplantation. Transplantation 76(12):1763–1770PubMedCrossRefGoogle Scholar
  62. 62.
    Siemionow M, Gozel-Ulusal B, Engin Ulusal A et al (2003) Functional tolerance following face transplantation in the rat. Transplantation 75(9):1607–1609PubMedCrossRefGoogle Scholar
  63. 63.
    Ulusal BG, Ulusal AE, Ozmen S et al (2003) A new composite facial and scalp transplantation model in rats. Plast Reconstr Surg 112(5):1302–1311PubMedCrossRefGoogle Scholar
  64. 64.
    Unal S, Agaoglu G, Zins J et al (2005) New surgical approach in facial transplantation extends survival of allograft recipients. Ann Plast Surg 55(3):297–303PubMedCrossRefGoogle Scholar
  65. 65.
    Demir Y, Ozmen S, Klimczak A et al (2004) Tolerance induction in composite facial allograft transplantation in the rat model. Plast Reconstr Surg 114(7):1790–801PubMedCrossRefGoogle Scholar
  66. 66.
    Demir Y, Ozmen S, Klimczak A et al (2006) The efficacy of different immunosuppressive treatment protocols on survival and development of chimerism in vascularized skin allograft transplants across MHC barrier. Plast Reconstr Surg [In press]Google Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • Maria Siemionow
    • 1
  • Yalcin Kulahci
    • 1
  1. 1.Department of Plastic SurgeryThe Cleveland Clinic FoundationClevelandUSA

Personalised recommendations