Extra Spacetime Dimensions and the LHC

  • Sreerup Raychaudhuri


The last decade has seen an explosive revival of interest in extra spacetime dimensions. Inspired by developments in string theory, ingenious phenomenological models have been constructed in which gravity becomes strong at the scale of a few TeV, thereby solving the long-standing hierarchy problem of particle physics. Perhaps the most interesting aspect of these theories is the possibility of ‘seeing’ quantum gravity effects — including microscopic black holes — in experiments carried out at the TeV scale, of which the Large Hadron Collider (LHC) at CERN is the imminent one. Some of these ideas are reviewed in this article and the possibility of seeing signals for extra dimensions at the LHC are briefly discussed.


Black Hole Higgs Boson Large Hadron Collider Extra Dimension Vacuum Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ward, The Life of Henry More, Vols. I and II, Springer (2000)Google Scholar
  2. 2.
    C.E. Hinton, Speculations on the Fourth Dimension, Dover (180)Google Scholar
  3. 3.
    A fascinating account of the early days of Kaluza-Klein theories is given by O. Raifeartaigh, hep-ph/9810524 (1998). See also The Dawning of Gauge Theory by the same author, Princeton U. Press (1997)Google Scholar
  4. 4.
    T. Kaluza, Sitz. Preuss. Akad. Wiss. Berlin (Math.Phys.) (1921) 966–972Google Scholar
  5. 5.
    O. Klein, Z. Phys. 37 (1926) 895–906CrossRefADSGoogle Scholar
  6. 6.
    I. Antoniadis, Phys. Lett. B246 (1990) 377–384; I. Antoniadis, K. Benakli and M. Quiros, Phys. Lett. B331 (1994) 313–320MathSciNetADSGoogle Scholar
  7. 7.
    I. Antoniadis, S. Dimopoulos and G.R. Dvali, Nucl. Phys. B516 (1998) 70–82CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phys. Lett. B429 (1998) 263–272ADSGoogle Scholar
  9. 9.
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phys. Lett. B436 (1998) 257–263ADSGoogle Scholar
  10. 10.
    L. Randall and R. Sundrum, Nucl. Phys. B557 (1999) 79–118CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    P. Mathews, S. Raychaudhuri and K. Sridhar, Phys. Lett. B450 (1999) 343–347; ibid. Phys. Lett. B455 (1999) 115–119; JHEP 0007 (2000) 008MathSciNetADSGoogle Scholar
  12. 12.
    H. Weyl, Math. Ann. 71 (1912) 441479CrossRefMathSciNetGoogle Scholar
  13. 13.
    For a very readable and up-to-date review, see S.M. Carroll, The Cosmological Constant, Living Rev. Relativity 4 (2001), URL: Scholar
  14. 14.
    E.G. Floratos and G.K. Leontaris, Phys. Lett. B465 (1999) 95–100MathSciNetADSGoogle Scholar
  15. 15.
    For an excellent but slightly old review, see C.S. Unnikrishnan, Pramana J. Phys. 41 (1993) Suppl. 395–411Google Scholar
  16. 16.
    S. Schlamminger et al (Eöt-Wash Experiment), Phys. Rev. Lett. 100 (2008) 041101CrossRefADSGoogle Scholar
  17. 17.
    E. Gildener, Phys. Rev. D14 (1976) 1667ADSGoogle Scholar
  18. 18.
    V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett. B125 (1983) 136–138ADSGoogle Scholar
  19. 19.
    K. Akama, Lect. Notes Phys. 176 (1982) 267–271CrossRefADSGoogle Scholar
  20. 21.
    G.F. Giudice, R. Rattazzi and J.D. Wells, Nucl. Phys. B544 (1999) 3–38; E.A. Mirabelli, M. Perelstein and M. Peskin, Phys. Rev. Lett. 82 (1999) 2236-2239; T. Han, J.D. Lykken and R.-J. Zhang, Phys. Rev. D59 (1999) 105006CrossRefADSGoogle Scholar
  21. 22.
    S.B. Giddings and S.D. Thomas, Phys. Rev. D65 (2002) 056010ADSGoogle Scholar
  22. 23.
    S.W. Hawking, Commun. Math. Phys. 43 (1975) 199–220; Erratum-ibid. Commun. Math. Phys. 46 (1976) 206CrossRefMathSciNetADSGoogle Scholar
  23. 24.
    S.B. Giddings and M.L. Mangano, Phys. Rev. D78 (2008) 035009; a very readable summary of their main arguments may be found in M.E. Peskin, Physics 1 (2008) 14Google Scholar
  24. 25.
    Dirac’s views may be read in A Physicist’s Conception of Nature, ed. J. Mehra, pp. 1–14Google Scholar
  25. 26.
    W.D. Goldberger and M.B. Wise, Phys. Rev. D60 (1999) 107505MathSciNetADSGoogle Scholar
  26. 27.
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phys. Rev. Lett. 84 (2000) 2080CrossRefADSGoogle Scholar
  27. 28.
    C. Collard, talk presented at Physics at LHC, Vienna (2004)Google Scholar
  28. 29.
    W.D. Goldberger and M.B. Wise, Phys. Rev. Lett. 83 (1999) 4922–4925CrossRefADSGoogle Scholar
  29. 30.
    R. Altendorfer, J. Bagger and D. Nemeschansky, Phys. Rev. D63 (2001) 125025MathSciNetADSGoogle Scholar
  30. 31.
    See, for example, P.K. Das, S.K. Rai and S. Raychaudhuri, Phys. Lett. B618 (2005) 221–228ADSGoogle Scholar
  31. 32.
    Some cases are discussed in G.F. Giudice, R. Rattazzi and J.D. Wells, Nucl. Phys. B595 (2001) 250–276CrossRefMathSciNetADSGoogle Scholar
  32. 33.
    J.D. Lykken and S. Nandi, Phys. Lett. B485 (2000) 224–230ADSGoogle Scholar
  33. 34.
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Phys. Rev. Lett. 86 (2001) 4757–4761CrossRefMathSciNetADSGoogle Scholar
  34. 35.
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Phys. Rev. D64 (2001) 035002ADSGoogle Scholar
  35. 36.
    J.M. Maldacena, Int. J. Theor. Phys. 38 (1999) 1113–1133zbMATHCrossRefMathSciNetGoogle Scholar
  36. 37.
    For a nice review of this and similar ideas, see I.Z. Rothstein, Tasi Lectures on Effective Field Theories, arXiv:hep-ph/0308266 (2004)Google Scholar
  37. 38.
    A popular translation of Rumi’s poems may be found in The Essential Rumi, tr. Coleman Barks, Harper One (1997)Google Scholar

Copyright information

© Indian National Science Academy, New Delhi 2009

Authors and Affiliations

  • Sreerup Raychaudhuri
    • 1
  1. 1.Department of Theoretical PhysicsTIFRMumbaiIndia

Personalised recommendations