Skip to main content

ROS and Oxidative Stress: Origin and Implication

  • Chapter
  • First Online:
Reactive Oxygen Species in Plant Biology

Abstract

Molecular oxygen (O2) is the primary cellular electron acceptor in aerobic respiration that serves fundamental roles in membrane-linked ATP formation and other fundamental cellular and metabolic functions. But, as an untoward but inescapable consequence of different metabolic events in oxygen-saturated cellular environment, reactive oxygen species (ROS) are incessantly generated by partial or incomplete reduction of molecular oxygen. In plants, ROS are continuously generated as oxidation – reduction cascades of different metabolism located in different cellular compartments and as by-product of various metabolic events. The most important ROS include superoxide (O2.−), perhydroxy radical (HO2.), hydrogen peroxide (H2O2), hydroxy radical (OH.), and singlet oxygen (O2). The other secondary oxidative products like alkoxy radical (RO.), peroxy radical (ROO.), organic hydroperoxide (ROOH), excited carbonyl (RO.), etc. are also produced in plant cells. Though ROS is generated under natural conditions, their productions are augmented under the exposure of unfavorable environmental cues and natural course of senescence. Major sources of ROS in plant cell encompass spilling of electrons during photosynthetic and respiratory electron transport, decompartmentalization of transition metal ions, and also various biological redox reactions. In fact, the redox cascades of chloroplast, peroxisome, and mitochondria of green cells not only determine the driving forces for metabolism but also recognized as the prime source of ROS. Lipid peroxidation, which is known to produce ROS like alkoxy, peroxy radicals as well as singlet oxygen, is also considered as bona fide source of ROS in plant cells. In plants, apoplastic enzyme respiratory burst oxidase homologs (RBOHs) or NADPH oxidases play a major role in originating ROS wave through the other network of ROS production as well. The ROS wave, which is a consequence of perception of unfavorable environmental cues should be integrated with additional metabolic/signaling pathways to enable rapid systemic acclimation of plants. However, an elaborate and efficient antioxidative defense system, comprising a variety of antioxidant molecules, quenchers, and enzymes, determines the ROS turnover and hence the steady-state level of ROS and the redox status of the cell. Plants are equipped with those defense systems not only to combat enhanced level of ROS but also to tightly regulate the endogenous concentration necessary for controlling various events of Plant Biology. However, the decontrolled level of ROS generation, if remaining unabated may cause a solemn threat to or cause oxidative deterioration and in extreme cases the death of plant cells. The present chapter describes the physicochemical basis of the production of ROS, under normal and unfavorable environmental conditions, and senescence, with an added effort to understand their implication associated with those situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen DJ, McKee IF, Farage PK, Baker NR (1997) Analysis of the limitation to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant Cell Environ 20:633–640

    Article  CAS  Google Scholar 

  • Alscher RG, Hess JL (1993) Antioxidant in higher plants. CRC Press, Boca Raton. ISBN O-8493-6328-4

    Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationship in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200–214

    CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species; metabolism, oxidative stress and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82(10):1227–1273

    CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplast:scavenging oxygens and dissipation of excess protons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmund CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Aust SD, Moorehouse CE, Thomas CE (1985) Role of metals in oxygen radical reactions. J Free Radic Biol Med 01:03–25

    Article  CAS  Google Scholar 

  • Bartoli CG, Simontacchi M, Eduardo T, Beltrano J, Montaldi E, Puntarulo S (1999) Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J Exp Bot 50(332):375–383

    Article  CAS  Google Scholar 

  • Bhattacharjee S (1998) Membrane lipid peroxidation, free radical scavengers and ethylene evolution in Amaranthus as affected by lead and cadmium. Biol Plant 40(1):131–135

    Article  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: role in stress, senescence and signal transduction in plants. Curr Sci 89(05):1115–1121

    Google Scholar 

  • Bhattacharjee S (2008) Calcium –dependent signaling pathway in the heat induced oxidative injury in Amaranthus lividus L. Biol Plant 52(01):137–140

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2012) An inductive pulse of hydrogen peroxide pretreatment restores redox- homeostasis and mitigates oxidative membrane damage under extremes of temperature in two rice cultivars (Oryza sativa L., cultivars Ratna and SR 26B). Plant Growth Regul 68:395–410

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2014) Membrane lipid peroxidation and its conflict of interest: the two faces of oxidative stress. Curr Sci 107:1811–1823

    CAS  Google Scholar 

  • Bhattacharjee S, Mukherjee AK (1996) Lead and cadmium mediated membrane damage in Rice. II. Hydrogen peroxide level, superoxide-dismutase, catalase and peroxidase activities. J Ecotoxicol Environ Monit 06(01):035–039

    Google Scholar 

  • Bhattacharjee S, Mukherjee AK (2001) Abiotic stress induced membrane damage in plants: a free radical phenomenon. In: Pandey SK (ed) Advances of stress physiology of plants. Scientific Publishers of India, Jhodpur, pp 16–36

    Google Scholar 

  • Bhattacharjee S, Mukherjee AK (2002) Salt stress induced cytosolute accumulation, antioxidant response and membrane deterioration in three rice cultivars during germination. Seed Sci Technol 30:279–287

    Google Scholar 

  • Bhattacharjee S, Mukherjee AK (2003) Implication of reactive oxygen species in heat shock induced germination and early growth impairment in Amaranthus lividus L. Biol Plant 47(04):517–522

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Mukherjee AK (2004) Heavy metal induced germination and early growth impairment in Amaranthus lividus L.: implications of oxidative membrane damage. J Plant Biol 31(1):01–11

    CAS  Google Scholar 

  • Bi JL, Felton GW (1995) Foliar oxidative stress and insect herbivory: primary compounds secondary metabolites and ROS as components of induced resistance. J Chem Ecol 21:1511–1530

    Article  CAS  PubMed  Google Scholar 

  • Biehler K, Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolwell GP, Bnti VS, Davis DR, Zinmorlin A (1995) The origin of oxidative burst in plants. Free Radic Res 23:517–532

    Article  CAS  PubMed  Google Scholar 

  • Borchman D, Sinha S (2002) Determination of products of lipid oxidation by infrared spectroscopy. In: Armstrong D (ed) Oxidative stress biomarkers and antioxidant protocols. Humana Press Inc, Totowa, pp 21–28

    Chapter  Google Scholar 

  • Boveris A, Cadenas E (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 54(3):311–314

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M, Inzé D (1994) Superoxide dismutases in plants. Crit Rev Plant Sci 13:199–218

    Article  CAS  Google Scholar 

  • Brady JD, Fry SC (1997) Formation of di–isodityrosine and loss of isodityrosine in cell walls of tomato of cell suspension cultures treated with fungal elicitors or hydrogen peroxide. Plant Physiol 115:87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruke JJ, Gamble PE, Hatfield JL, Quinsberry JE (1985) Morphological and biochemical responses to field water deficit. I. Responses to glutathione reductase activity and paraquat sensitivity. Plant Physiol 79:415–419

    Article  Google Scholar 

  • Buchanon BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  CAS  Google Scholar 

  • Chen SX, Schopfer P (1999) Hydroxyl radical production in physiological reactions: a novel function of peroxidase. Eur J Biochem 260:726–735

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury FK, Rivero FM, Blumwald E, Mittler R (2016) Reactive oxygen species, abiotic stress and stress combination. Plant J. https://doi.org/10.1111/tpj.13299

  • Cressien G, Firmin J, Fryer M, Kular B, Leyland N (1999) Elevated glutathione biosynthesis capacity in the chloroplast of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11:1277–1292

    Article  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dat J, Van Breusegerm F, Vandenabeele S, Vranova E, Van Montagu M, Inze D (2000) Active oxygen species and catalase during plant stress response. Cell Mol Life Sci 57:779–786

    Article  CAS  PubMed  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    Article  CAS  PubMed  Google Scholar 

  • De Groot JJMC, Veldink GA, Vliegenthart JFG, Bpldingh J, Wever R, Vangelder BF (1975) Demonstration by EPR spectroscopy of functional role of iron in soybean lipoxygenase 1. Biochem Biophys Acta 377:71–79

    PubMed  Google Scholar 

  • Del Rio LA, Sandalio LM, Palma JM, Bueno P, Cospus FJ (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med 13:557–580

    Article  PubMed  Google Scholar 

  • Devlin WS, Gustine DL (1992) Involvement of oxidative burst in phytoallexin accumulation and hypersensitive reaction. Plant Physiol 100:1189–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhindsa RJ, Dhindsa PP, Thorpe TA (1982) Leaf senescence and lipid peroxidation: effect of some phytohormones and scavengers of free radicals and singlet oxygen. Physiol Plant 56:543–557

    Article  Google Scholar 

  • Doke N, Miura Y, Leandro MS, Kawakitn K (1994) Involvement of superoxide in signal transduction: responses to attack pathogens, physical and chemical shocks and UV irradiation. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 177–197

    Google Scholar 

  • Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K (2013) The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6:559–569

    Article  CAS  PubMed  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, Mathieu CD, Chetrit P, Foyer CH, De paepe R (2003) Leaf mitochondria modulate whole cell redox homoeostasis, set antioxidant capacity and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15:1212–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eltsner EF (1982) Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol 33:73–96

    Article  Google Scholar 

  • Eltsner EF (1987) Metabolism of activated oxygen species. In: Davis D (ed) The biochemistry of plants San Diego. Academic Press, pp 253–315

    Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM, Knight MR (2005) ROS perception in Arabidopsis thaliana: the ozone-induced calcium response. Plant J 41:615–626. https://doi.org/10.1111/j.1365-313X.2004.02325.x

    Article  CAS  PubMed  Google Scholar 

  • Fadzillah NM, Gill V, Flinch RP, Burdon RH (1996) Chilling, oxidative stress and antioxidative response in shoot cultivars of rice. Planta 199:552–556

    Article  CAS  Google Scholar 

  • Forman HJ, Boveris A (1982) Free radicals in biology and medicine, vol 5. Academic Press, New York, pp 65–90

    Book  Google Scholar 

  • Foyer CH (1997) Oxygen metabolism and electron transport in in photosynthesis. In: Scandalios J (ed) Molcular biology of free radical scavenging enzymes. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and regulation of photoelectron transport. In: Foyer CH, Mullineauex PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 01–13

    Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplast, peroxysome and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1986) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58:61–97

    CAS  PubMed  Google Scholar 

  • Fridovich I (1995) Superoxide and superoxide dismutase. Ann Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Gabig TG (1983) NADPH-dependent superoxide generating oxidase from human nutrophils. J Biol Chem 258:6352–6356

    CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. In: Anjum NA, Lopez-Lauri F (eds) Plant nutrition and abiotic stress tolerance III, plant stress 5 (Special Issue 1). Global Science Books Ltd.), Ikenobe, pp 1–23

    Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630

    Article  CAS  PubMed  Google Scholar 

  • Grossman S, Leshem YY (1978) Lowering endogenous LOX activities in Pisum sativum by cytokinin as related to senescence. Physiol Plant 43:359–362

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants: Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity and oxyradicals, transition metals and disease. Biochem J 219:01–19

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Hameed A, Goher M, Iqbal N (2013) Drought induced programmed cell death and associated changes in antioxidants, proteases, and lipid peroxidation in wheat leaves. Biol Plant 57:370–374

    Article  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDC (2000) Responses to plant pathogen. In: Buchanon BB, Grussem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiology, Rockville, pp 102–106

    Google Scholar 

  • Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N (2009) Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal 11:2245–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendry GAF, Baker AJM, Ewart CF (1992) Cadmium tolerance and toxicity, oxygen radical processes and molecular damages in cadmium tolerant and sensitive clones of Holcuslanatus. Acta Bot Mecrl 41:271–281

    Article  CAS  Google Scholar 

  • Hernández JA, Jiménez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–862doi. https://doi.org/10.1046/j.1365-3040.2000.00602.x

    Article  Google Scholar 

  • Hideg E, Kalai T, Hideg K, Vass L (1998) Photoinhibition of photosynthesis in vivo results in singlet oxygen production. Detection via nitroxide induced fluorescence quenching in broad bean leaves. Biochemistry 37:11405–11411

    Article  CAS  PubMed  Google Scholar 

  • Hideg E, Barta C, Kalai T, Hideg K, Vass L, Asada K (2002) Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol 11:54–64

    Google Scholar 

  • Higuchi T (2006) Look back over the studies of lignin biochemistry. J Wood Sci 52:2. https://doi.org/10.1007/s10086-005-0790-z

    Article  CAS  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabs T (1999) Reactive oxygen species intermediates as mediators of programmed cell eath in plants and animals. Biochem Pharmacol 57:231–245

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of ABA on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42(11):1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Kaya H, Kawarazaki T, Hiraoka G, Senzaki E, Michikawa M (2012) Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim Biophys Acta 1823:398–405. https://doi.org/10.1016/j.bbamcr.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346. https://doi.org/10.1093/jxb/erh237

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL (2003) NADPH oxidase Atrboh D and Atrboh F genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633. https://doi.org/10.1093/emboj/cdg277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signaling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Legendre L, Rueter S, Heinstei PF, Low PS (1993) Characterization of the oligogacturroxide-induced oxidative burst in cultured soybean cells. Plant Physiol 102:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine A (1999) Oxidative stress as regulator environmental responses in plants. In: Ferver HR (ed) Plant responses to environmental stress. Mervel Decker Inc, Switzerland, pp 146–163

    Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb CJ (1994) Hydrogen peroxide from oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Pennell RI, Alvarez MF, Palmer R, Lamb C (1996) Calcium mediated apoptosis in a plant hypersensitive disease response. Curr Biol 04:427–437

    Article  Google Scholar 

  • Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y (2009) Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot 60:3221–3238. https://doi.org/10.1093/jxb/erp157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahalingam R, Fredroff N (2003) Stress response, cell death and signaling: the many faces of ROS. Physiol Plant 119:56–68

    Article  CAS  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) Alternative oxidase lowers mitochondrial ROS production in plant cells. Proc Natl Acad Sci 96:8271–8276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell DP, Nickels R, McIntosch L (2002) Evidence of mitochondrial involvement in transduction of signals required for induction of genes associated with pathogen attack and senescence. Plant J 29:269–279

    Article  CAS  PubMed  Google Scholar 

  • Mehlar AH (1951) Studies on reactions of Illuminated chloroplasts. II Stimulation and inhibition of reaction b with oxygen. Arch Biochem Biophys 33:65–77

    Article  Google Scholar 

  • Millar AH, Leaver CJ (2000) The cytotoxic lipid peroxidation product, 4-hydroxyl-2-nonenal specifically inhibits dehydrogenase in matrix of plant mitochondria. FEBS Lett 481:117–121

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133(3):481–489

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA (2009) The plant NADPH oxidase RbohD mediates rapid, systemic signaling in response to diverse stimuli. Sci Signal 2(84):45–49

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Google Scholar 

  • Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27:64–70. https://doi.org/10.1105/tpc.114.133090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications of cellular proteins. Annu Rev Plant Biol 58:459–481

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13. https://doi.org/10.1042/BJ20081386

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol:5388–5395. https://doi.org/10.1016/S1369-5266(02)00282-0

  • Nixon PJ (2000) Chlororespiration. Philos Trans R Soc London 355:1541–1547

    Article  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovic SD, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in wheat leaves. A predominant role for photorespiration? Ann Bot 89:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and location of Cu-Zn SOD in the vascular tissues of spinach hypodermis and their association with lignification. Plant Cell Physiol 38:1118–1123

    Article  CAS  PubMed  Google Scholar 

  • Overmyer K, Brosché M, Kangaskärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342. https://doi.org/10.1016/S1360-1385(03)00135-3

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Pinto E, Sigaud-kutner T, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.x

    Article  CAS  Google Scholar 

  • Porter NA, Caldwell SE, Mills KA (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290. https://doi.org/10.1007/BF02536034

    Article  CAS  PubMed  Google Scholar 

  • Prasad TK, Anderson MD, Martin B, Stewart CR (1994) Evidence of chilling induced oxidative stress and a regulatory role of hydrogen peroxide. Plant Cell 06:65–74

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species – contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robson CA, Vanlerberghe GC (2002) Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria –dependent and independent pathways of cell death. Plant Physiol 129:1908–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouhier N, Stephane D, Lenaire JPJ (2008) The role of glutathione in photosynthetic organism: emerging function of glutaredoxin and glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91(phox) NADPH oxidase: modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Segal AW, Abo A (1993) The biochemical basis of NADPH oxidase of phagocytes. Trends Biochem Sci 18:43–47

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot:1–26. https://doi.org/10.1155/2012/217037

  • Sharma R, Priya P, Jain M (2013) Modified expression of an auxin-responsive rice CC-type glutaredoxin gene affects multiple abiotic stress responses. Planta 238:871–884

    Article  CAS  PubMed  Google Scholar 

  • Sochor J, Babula P, Adam V, Krska B, Kizek R (2012) Sharka: the past, the present and the future. Viruses 4:2853–2901

    Article  PubMed  PubMed Central  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mungbean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85:85–89

    Article  CAS  Google Scholar 

  • Spiteller G (2003) The relationship between cell wall, lipid peroxidation, proliferation, senescence and cell death. Physiol Plant 119:05–18

    Article  CAS  Google Scholar 

  • Spreitzer H, Schmidt J, Spiteller G (1989) Comparative analyses of the fatty acid fraction of vegetables in dependence on preliminary treatment. Fett Wiss Technol 91:108–113

    CAS  Google Scholar 

  • Strid A, Chow WS, Anderson JM (1994) UV-B damage and protection at the molecular level in plants. Photosynth Res 39:475–489

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2011) ROS and redox signaling in response to abiotic stress. Plant Cell Environ. https://doi.org/10.1111/j.1365-3040.2011.02336.x

  • Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF (2013) Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25:3553–3569. https://doi.org/10.1105/tpc.113.114595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JE, Legge RE, Barber RF (1987) Role of free radicals in senescence and wounding. New Phytol 105:313–344

    Article  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91 phox homologues atrboh D atrboh F are required for acclimation reactive oxygen intermediates in plant dependent response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effect of metals on enzymic activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Vanova E, VanBreusegerm F, Dat J, Belles-Bolx E, Inze D (2002) Role of reactive oxygen species in signal transduction. In: Scheel D, Wasternack C (eds) Plant signal transduction. Oxford University Press, Oxford, pp 41–73

    Google Scholar 

  • Winston GW (1990) Physicochemical basis of free radical formation in cells: production and defenses. In: Smallwood W (ed) Stress responses in plants: adaptation and acclimation mechanisms. Willy-Liss Inc, New York, pp 57–86

    Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen species and nitrogen species. Cancer Biochem J 387:856–870

    Google Scholar 

  • Zhou YH, Yu JQ, Mao WH, Huang LF, Song XS, Nogués S (2006) Genotypic variation on Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants. Plant Cell Physiol 47:192–199

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature India Private Limited

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharjee, S. (2019). ROS and Oxidative Stress: Origin and Implication. In: Reactive Oxygen Species in Plant Biology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3941-3_1

Download citation

Publish with us

Policies and ethics