Skip to main content

Future Prospects in Polyploidy Research

  • Chapter
  • First Online:
Polyploidy: Recent Trends and Future Perspectives

Abstract

Polyploidy has played a great role in the evolution of domesticated plants (Hilu 1993); indeed, most of the major crop plants are allopolyploids, including wheat (Triticum aestivum), maize (Zea mays), oats (Avena sativa), alfalfa (Medicago sativa), sugarcane (Saccharum officinale), potato (Solanum tuberosum), sweet potato (Ipomoea batatas), banana (Musa sapientum), cotton (Gossypium hirsutum), tobacco (Nicotiana tabacum), coffee (Coffea arabica), apple (Malus pumila) and pear (Pyrus communis). With this background, polyploidy has a bright future in such departments as agriculture, horticulture and floriculture. It has great scope of being used in plant breeding to improve the existing crops or develop new ones to cater to the needs of exponentially increasing human population. According to Stebbins (1950), allopolyploids or amphiploids can be useful in plant breeding in three ways:

  • To transfer a valuable character carried by a single genetic factor across a barrier of interspecific sterility.

  • To incorporate some desirable characteristic controlled by many genetic factors into a crop plant.

  • To be used as entirely new crop plants with qualities different from any one known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams KL (2007) Evolution of the duplicate gene expression in the polyploidy and hybrid plants. J Hered 98:136–141

    Article  CAS  PubMed  Google Scholar 

  • Anssour S, Krügel T, Sharbel TF, Saluz HP, Bonaventure G, Baldwin IT (2009) Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Ann Bot 103:1207–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, Chen X, Stelly DM, Rabinowicz PD, Town CD, Arioli T (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR, Chase MW (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 33:75–90

    Article  CAS  PubMed  Google Scholar 

  • Cronn R, Knaus BJ, Liston A, Maughan PJ, Parks M, Syring JV, Udall J (2012) Targeted enrichment strategies for next-generation plant biology. Am J Bot 99:291–311

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawcett JA, Maere S, van de peer Y (2009) Plants with double genomes might have had a better chance to survive the cretaceous-tertiary extinction event. Proc Nat Acad Sci U S A 106:5737–5742

    Article  CAS  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover CE, Salmon A, Wendel JF (2012) Targeted sequence capture as a powerful tool for evolutionary analysis. Am J Bot 99:312–319

    Article  PubMed  Google Scholar 

  • Gupta PK, Rustgi S, Mir R (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  CAS  PubMed  Google Scholar 

  • Han FP, Fedak G, Ouellet T, Liu B (2003) Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome 46:716–723

    Article  CAS  PubMed  Google Scholar 

  • Hilu KW (1993) Polyploidy and the evolution of domesticated plants. Am J Bot 80:1494–1499

    Article  Google Scholar 

  • Ilut DC, Coate JE, Luciano AK, Owens TG, May GD, Farmer A, Doyle JJ (2012) A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-seq in plant species. Am J Bot 99:383–396

    Article  CAS  PubMed  Google Scholar 

  • Jiang CX, Wright RJ, El-Zik K, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci U S A 95:4419–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot 99:248–256

    Article  PubMed  Google Scholar 

  • Lavania UC, Srivastava S, Lavania S, Basu S, Misra NK, Mukai Y (2012) Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J 71:539–549

    Article  CAS  PubMed  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Lim KY, Souckova-Skalicka K, Sarasan V, Clarkson JJ, Chase MW, Kovarik A, Leitch AR (2006) A genetic appraisal of a new synthetic Nicotiana tabacum (Solanaceae) and the Kostoff synthetic tobacco. Am J Bot 93:875–883

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    Article  CAS  PubMed  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    Article  CAS  PubMed  Google Scholar 

  • Pearse IS, Krugel T, Baldwin IT (2006) innovation in anti-herbivore defense systems during neopolypoloidy—the functional consequences of instantaneous speciation. Plant J 47:196–210

    Article  CAS  PubMed  Google Scholar 

  • Potato Genome Sequencing Consortium (2012) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Burleigh JG (2009) Surviving the K-T mass extinction: new perspectives of polyploidization in angiosperms. Proc Natl Acad Sci U S A 106:5455–5456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Tate JA, Soltis DE, Soltis PS (2005) Polyploidy in plants. In: Gregory TR (ed) The evolution of the genome. Elsevier, San Diego, pp 371–426

    Chapter  Google Scholar 

  • Thompson JN, Nuismer SL, Merg KF (2004) Plant polyploidy and the evolutionary ecology of plant/animal interactions. Biol J Linn Soc 82:511–519

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, TUH., Rehman, RU. (2017). Future Prospects in Polyploidy Research. In: Polyploidy: Recent Trends and Future Perspectives. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3772-3_8

Download citation

Publish with us

Policies and ethics