Advertisement

Tissue Water Status and Bacterial Pathogen Infection: How They Are Correlated?

Chapter

Abstract

Tissue water status plays an important role in determining the fate of plant-pathogen interaction. Water availability is one of the factors that determine the multiplication of bacteria on the surface and inside the plants. Plant-water relations are highly influenced by soil water status, and drought stress is known to severely impact plant-pathogen interaction. Water, as a limiting factor, is differentially manipulated by both plants and pathogens during compatible and incompatible interactions. Plants stimulate the localized loss of water at the site of infection for limiting the bacterial multiplication. On the other hand, foliar and vascular bacterial pathogens employ different strategies to alter the plant water status and eventually establish the infection in plants. Foliar pathogens manipulate their own machinery in response to water-limited condition in plants. They also modulate the plant machinery in order to promote disease by increasing the water soaking between the cells. Similarly, vascular pathogens use different strategies such as clogging of vessels and embolism of xylem elements that leads to wilting of plant. Here, we discuss the current knowledge on impact of drought stress during plant interaction with foliar or vascular pathogen interactions.

Keywords

Apoplast Drought Foliar pathogen Plant defense Vascular pathogen  Water Xylem  

Notes

Acknowledgments

Combined stress tolerance-related projects at MSk Lab are supported by National Institute of Plant Genome Research core funding and DBT-Ramalingaswami re-entry fellowship grant (BT/RLF/re-entry/23/2012) and DBT-Innovative Young Biotechnologist Award. UF acknowledges DBT-SRF (DBT/2013/NIPGR/68) fellowship.

References

  1. Axtell CA, Beattie GA (2002) Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Appl Environ Microbiol 68:4604–4612CrossRefPubMedPubMedCentralGoogle Scholar
  2. Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R et al (2008) Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol 146:1797–1809CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beattie GA (2011) Water relations in the interaction of foliar bacterial pathogens with plants. Annu Rev Phytopathol 49:533–555CrossRefPubMedGoogle Scholar
  4. Beattie GA, Lindow SE (1994) Survival, growth, and localization of epiphytic fitness mutants of Pseudomonas syringae mutants on leaves. Appl Environ Microbiol 60:3790–3798PubMedPubMedCentralGoogle Scholar
  5. Bostock RM, Pye MF, Roubtsova TV (2014) Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol 52:517–549CrossRefPubMedGoogle Scholar
  6. Brunings AM, Gabriel DW (2003) Xanthomonas citri: breaking the surface. Mol Plant Pathol 4:141–157CrossRefPubMedGoogle Scholar
  7. Bunster L, Fokkema HJ, Schippers B (1989) Effect of surface activity of Pseudomonas spp, on leaf wettability. Appl Environ Microbiol 55:1340–1345PubMedPubMedCentralGoogle Scholar
  8. Cayley S, Lewis BA, Record MT (1992) Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol 174:1586–1595CrossRefPubMedPubMedCentralGoogle Scholar
  9. Choi HK, Iandolino A, Goes da Silva F, Cook D (2013) Water deficit modulates the response of Vitis vinifera to the Pierce’s disease pathogen Xylella fastidiosa. Mol Plant-Microbe Interact 26:643–657CrossRefPubMedGoogle Scholar
  10. Cook AA, Stall RE (1977) Effects of watersoaking on response to Xanthomonas vesicatoria in pepper leaves. Phytopathology 67:1101–1103CrossRefGoogle Scholar
  11. Coplin DL, Majerczak DR (1990) Extracellular polysaccharide genes in Erwinia stewartii: directed mutagenesis and complementation analysis. Mol Plant-Microbe Interact 3:286–292CrossRefGoogle Scholar
  12. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147PubMedPubMedCentralGoogle Scholar
  13. Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606CrossRefPubMedGoogle Scholar
  14. Daugherty MP, Lopes JRS, Almeida RPP (2010) Strain-specific alfalfa water stress induced by Xylella fastidiosa. Eur J Plant Pathol 127:333–340CrossRefGoogle Scholar
  15. de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Egea PR, Bogre L, Grant M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26:1434–1443CrossRefPubMedPubMedCentralGoogle Scholar
  16. Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579–1587CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dinnibier U, Limpinsel E, Schmid R, Bakker EP (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing-cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150:348–357CrossRefGoogle Scholar
  18. D’Souza-Ault MR, Smith LT, Smith GM (1993) Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol 59:473–478PubMedPubMedCentralGoogle Scholar
  19. Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, Thiel J, Malfatti S, Loper JE, Lapidus A, Detter JC, Land M, Richardson PM, Kyrpides NC, Ivanova N, Lindow SE (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 102:11064–11069CrossRefPubMedPubMedCentralGoogle Scholar
  20. Freeman BC, Beattie GA (2009) Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. Mol Plant-Microbe Interact 22:857–867CrossRefPubMedGoogle Scholar
  21. Freeman BC, Chen C, Beattie GA (2010) Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere. Environ Microbiol 12:1486–1497PubMedGoogle Scholar
  22. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442CrossRefPubMedGoogle Scholar
  23. Goel AK, Lundberg D, Torres MA, Matthews R, Akimoto-Tomiyama C, Farmer L, Dangl JL, Grant SR (2008) The Pseudomonas syringae type III effector HopAM1 enhances virulence on waterstressed plants. Mol Plant-Microbe Interact 21:361–370CrossRefPubMedGoogle Scholar
  24. Gross M, Rudolph K (1987) Demonstration of levan and alginate in bean plants (Phaseolus vulgaris) infected by Pseudomonas syringae pv. phaseolicola. J Phytopathol 120:9–19CrossRefGoogle Scholar
  25. Guo Y, Sagaram US, Kim JS, Wang N (2010) Requirement of the galU gene for polysaccharide production by and pathogenicity and growth in planta of Xanthomonas citri subsp. citri. Appl Environ Microbiol 76:2234–2242CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gupta A, Dixit SK, Senthil-Kumar M (2016) Drought stress predominantly endures Arabidopsis thaliana to pseudomonas syringae infection. Front Plant Sci 7:808PubMedPubMedCentralGoogle Scholar
  27. Ham JH, Majerczak DR, Arroyo-Rodriguez AS, Mackey DM, Coplin DL (2006) WtsE, an AvrEfamily effector protein from Pantoea stewartii subsp. stewartii, causes disease-associated cell death in corn and requires a chaperone protein for stability. Mol Plant-Microbe Interact 19:1092–1102CrossRefPubMedGoogle Scholar
  28. Hoyos ME, Zhang S (2000) Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol 122:1355–1364CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665CrossRefPubMedGoogle Scholar
  30. Jambunathan N, Siani JM, McNellis TW (2001) A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13:2225–2240CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefPubMedGoogle Scholar
  32. Keith RC, Keith LM, Hernández-Guzmán G, Uppalapati SR, Bender CL (2003) Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants. Microbiology 149:1127–1138CrossRefPubMedGoogle Scholar
  33. Kemp BP, Horne J, Bryant A, Cooper RM (2004) Xanthomonas axonopodis pv. manihotis gumD gene is essential for EPS production and pathogenicity and enhances epiphytic survival on cassava (Manihot esculenta). Physiol Mol Plant Pathol 64:209–218CrossRefGoogle Scholar
  34. Kets EP, Galinski EA, de Wit M, de Bont JA, Heipieper HJ (1996) Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J Bacteriol 178:6665–6670CrossRefPubMedPubMedCentralGoogle Scholar
  35. Koch AL (1984) Shrinkage of growing Escherichia coli cells by osmotic stress. J Bacteriol 159:919–924PubMedPubMedCentralGoogle Scholar
  36. Kurz M, Burch AY, Seip B, Lindow SE, Gross H (2010) Genome-driven investigation of compatible solute biosynthesis pathways of Pseudomonas syringae pv. syringae and their contribution to water stress tolerance. Appl Environ Microbiol 76:5452–5462CrossRefPubMedPubMedCentralGoogle Scholar
  37. Leigh JA, Coplin DL (1992) Exopolysaccharides in plant-bacterial interactions. Annu Rev Microbiol 46:307–346CrossRefPubMedGoogle Scholar
  38. Leveau JH, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci U S A 98:3446–3453CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lu GT, Ma ZF, Hu JR, Tang DJ, He YQ et al (2007) A novel locus involved in extracellular polysaccharide production and virulence of Xanthomonas campestris pathovar campestris. J Microbiol 153:737–746CrossRefGoogle Scholar
  41. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629CrossRefPubMedGoogle Scholar
  42. McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949CrossRefPubMedPubMedCentralGoogle Scholar
  43. Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980CrossRefPubMedGoogle Scholar
  44. Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101CrossRefPubMedPubMedCentralGoogle Scholar
  45. Miller KJ, Kennedy EP, Reinhold VN (1986) Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231:48–51CrossRefPubMedGoogle Scholar
  46. Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv.tomato and Peronospora parasitica. Funct Plant Biol 30:461–469CrossRefGoogle Scholar
  47. Moier JM, Lindow SE (2004) Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl Environ Microbiol 70:346–355CrossRefGoogle Scholar
  48. Monier JM, Lindow SE (2003) Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci U S A 100:15977–15982CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mosher S, Moeder W, Nishimura N, Jikumaru Y, Joo S-H et al (2010) The lesion-mimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic acid–dependent manner. Plant Physiol 152:1901–1913CrossRefPubMedPubMedCentralGoogle Scholar
  50. Newman KL, Almeida RPP, Purcell AH, Lindow SE (2003) Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Appl Environ Microbiol 69:7319–7327CrossRefPubMedPubMedCentralGoogle Scholar
  51. Oh HS, Collmer A (2005) Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. Plant J 44:348–359CrossRefPubMedGoogle Scholar
  52. Pandey P, Sinha R, Mysore KS, Senthil-Kumar M (2014) Impact of concurrent drought stress and pathogen infection on plants. In: Mahalingam R (ed) Combined stresses in plants: physiological, molecular, and biochemical aspects. Springer, ChamGoogle Scholar
  53. Peñaloza-Vázquez A, Fakhr MK, Bailey AM, Bender CL (2004) AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae. J Microbiol 150:2727–2737CrossRefGoogle Scholar
  54. Pérez-Donoso AG, Greve LC, Walton JH, Shackel KA, Labavitch JM (2007) Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots. Plant Physiol 143:1024–1036CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pérez-Donoso AG, Sun Q, Roper MC, Greve LC, Kirkpatrick B, Labavitch JM (2010) Cell wall–degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa infected grapevines. Plant Physiol 152:1748–1759CrossRefPubMedPubMedCentralGoogle Scholar
  56. Purcell AH, Hopkins DL (1996) Fastidious xylem-limited bacterial plant pathogens. Annu Rev Phytopathol 34:131–151CrossRefPubMedGoogle Scholar
  57. Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant-Microbe Interact 18:682–693CrossRefPubMedGoogle Scholar
  58. Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54CrossRefPubMedGoogle Scholar
  59. Ramegowda V, Senthil-Kumar M, Ishiga Y, Kaundal A, Udayakumar M, Mysore KS (2013) Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. Int J Mol Sci 14:9497–9513CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rico A, Preston GM (2008) Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant-Microbe Interact 21:269–282CrossRefPubMedGoogle Scholar
  61. Rudolph K (1978) Host specific principle from Pseudomonas-phaseolicola (Burkh) Dowson, inducing water-soaking in bean-leaves. Phytopathologische Zeitschrift- J Phytopathol 93:218–226 CrossRefGoogle Scholar
  62. Sattelmacher B, Horst WJ (2007) The apoplast of higher plants: compartment of storage. In: Sattelmacher B, Horst WJ (eds) Transport and reactions: the significance of the apoplast for the mineral nutrition of higher plants. Springer, BerlinGoogle Scholar
  63. Schreiber L, Krimm U, Knoll D, Sayed M, Auling G, Kroppenstedt RM (2005) Plant microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytol 166:589–594CrossRefPubMedGoogle Scholar
  64. Stevenson JF, Matthews MA, Greve LC, Labavitch JM, Rost TL (2004) Grapevine susceptibility to Pierce’s disease II: progression of anatomical symptoms. Am J Enol Vitic 55:238–245Google Scholar
  65. Sun Q, Sun Y, Walker MA, Labavitch JM (2013) Vascular occlusions in grapevines with Pierce’s disease make disease symptom development worse. Plant Physiol 161:1529–1541CrossRefPubMedPubMedCentralGoogle Scholar
  66. Swamy PM, Smith B (1999) Role of abscisic acid in plant stress tolerance. Curr Sci 76:1220–1227Google Scholar
  67. Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 41:649–660CrossRefPubMedGoogle Scholar
  68. Tang D, Simonich MT, Innes RW (2007) Mutations in LACS2, a long-chain acyl-coenzyme a synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis. Plant Physiol 144:1093–1103CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wang K, Senthil-Kumar M, Ryu CM, Kang L, Mysore KS (2012) Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol 158:1789–1802CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wardlaw IF (2005) Consideration of apoplastic water in plant organs: a reminder. Funct Plant Biol 32:561–569CrossRefGoogle Scholar
  71. Wright CA, Beattie GA (2004) Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:3269–3274CrossRefPubMedPubMedCentralGoogle Scholar
  72. Xiao F, Goodwin SM, Xiao Y, Sun Z, Baker D (2004) Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23:2903–2913CrossRefPubMedPubMedCentralGoogle Scholar
  73. Young JM (1974) Effect of water on bacterial multiplication in plant tissue. N Z J Agric Res 17:115–119CrossRefGoogle Scholar
  74. Yu J, Peñaloza-Vázquez A, Chakrabarty AM, Bender CL (1999) Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33:712–720CrossRefPubMedGoogle Scholar
  75. Yu X, Lund SP, Scott RA, Greenwald JW, Records AH, Nettleton D, Lindow SE, Grossd DC, Beattiea GA (2013) Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci U S A 110:e425–e434CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  1. 1.National Institute of Plant Genome ResearchNew DelhiIndia

Personalised recommendations