Abstract
In the conventional von Neumann (VN) architecture, data—both operands and operations to be performed on those operands—makes its way from memory to a dedicated central processor. With the end of Dennard scaling and the resulting slowdown in Moore’s law, the IT industry is turning its attention to non-Von Neumann (non-VN) architectures, and in particular, to computing architectures motivated by the human brain. One family of such non-VN computing architectures is artificial neural networks (ANNs). To be competitive with conventional architectures, such ANNs will need to be massively parallel, with many neurons interconnected using a vast number of synapses, working together efficiently to compute problems of significant interest. Emerging nonvolatile memories, such as phase-change memory (PCM) or resistive memory (RRAM), could prove very helpful for this, by providing inherently analog synaptic behavior in densely packed crossbar arrays suitable for on-chip learning. We discuss our recent research investigating the characteristics needed from such nonvolatile memory elements for implementation of high-performance ANNs. We describe experiments on a 3-layer perceptron network with 164,885 synapses, each implemented using 2 NVM devices. A variant of the backpropagation weight update rule suitable for NVM+selector crossbar arrays is shown and implemented in a mixed hardware–software experiment using an available, non-crossbar PCM array. Extensive tolerancing results are enabled by precise matching of our NN simulator to the conditions of the hardware experiment. This tolerancing shows clearly that NVM-based neural networks are highly resilient to random effects (NVM variability, yield, and stochasticity), but highly sensitive to gradient effects that act to steer all synaptic weights. Simulations of ANNs with both PCM and non-filamentary bipolar RRAM based on Pr\(_{1-x}\)Ca\(_x\)MnO\(_3\) (PCMO) are also discussed. PCM exhibits smooth, slightly nonlinear partial-SET (conductance increase) behavior, but the asymmetry of its abrupt RESET introduces difficulties; in contrast, PCMO offers continuous conductance change in both directions, but exhibits significant nonlinearities (degree of conductance change depends strongly on absolute conductance). The quantitative impacts of these issues on ANN performance (classification accuracy) are discussed.
Keywords
- Synaptic Weight
- Nonvolatile Memory
- Weight Update
- Nonvolatile Memory Device
- Crossbar Array
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options























References
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#Tesla (2015)
Breitwisch, M., Nirschl, T., Chen, C.F., Zhu, Y., Lee, M.H., Lamorey, M., Burr, G.W., Joseph, E., Schrott, A., Philipp, J.B., Cheek, R., Happ, T.D., Chen, S.H., Zaidi, S., Flaitz, P., Bruley, J., Dasaka, R., Rajendran, B., Rossnagel, S., Yang, M., Chen, Y.C., Bergmann, R., Lung, H.L., Lam, C.: Novel lithography–independent pore phase change memory. In: Symposium on VLSI Technology, pp. 100–101 (2007)
Burr, G.W., Narayanan, P., Shelby, R.M., Sidler, S., Boybat, I., di Nolfo, C., Leblebici, Y.: Large–scale neural networks implemented with nonvolatile memory as the synaptic weight element: comparative performance analysis (accuracy, speed, and power). In: IEDM Technical Digest, p. 4.4 (2015)
Burr, G.W., Shelby, R.M., di Nolfo, C., Jang, J., Shenoy, R., Narayanan, P., Virwani, K., Giacometti, E., Kurdi, B., Hwang, H.: Experimental demonstration and tolerancing of a large–scale neural network (165,000 synapses), using phase–change memory as the synaptic weight element. In: IEDM Technical Digest, p. 29.5 (2014)
Burr, G.W., Shelby, R.M., Sidler, S., di Nolfo, C., Jang, J., Boybat, I., Shenoy, R.S., Narayanan, P., Virwani, K., Giacometti, E.U., Kurdi, B., Hwang, H.: Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element. IEEE Trans. Electr. Devices 62(11), 3498–3507 (2015)
Gupta, S., Kaldewey, T.: Private communication (2015)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504 (2006)
Jackson, B.L., Rajendran, B., Corrado, G.S., Breitwisch, M., Burr, G.W., Cheek, R., Gopalakrishnan, K., Raoux, S., Rettner, C.T., Padilla, A., Schrott, A.G., Shenoy, R.S., Kurdi, B.N., Lam, C.H., Modha, D.S.: Nanoscale electronic synapses using phase change devices. ACM J. Emerg. Technol. Comput. Syst. 9(2), 12 (2013)
Jang, J.W., Park, S., Burr, G.W., Hwang, H., Jeong, Y.H.: Optimization of conductance change in Pr\(_{1-x}\)Ca\(_x\)MnO\(_3\)-based synaptic devices for neuromorphic systems. IEEE Electr. Device Lett. 36(5), 457–459 (2015)
Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278 (1998)
Lee, J., Jo, M., Seong, D.J., Shin, J., Hwang, H.: Materials and process aspect of cross-point RRAM (invited). Microelectron. Eng. 88(7), 1113–1118 (2011)
Park, S., Kim, H., Choo, M., Noh, J., Sheri, A., Jung, S., Seo, K., Park, J., Kim, S., Lee, W., Shin, J., Lee, D., Choi, G., Woo, J., Cha, E., Jang, J., Park, C., Jeon, M., Lee, B., Lee, B., Hwang, H.: RRAM–based synapse for neuromorphic system with pattern recognition function. In: IEDM Technical Digest, p. 10.2 (2012)
Rajendran, B., Liu, Y., Seo, J.S., Gopalakrishnan, K., Chang, L., Friedman, D.J., Ritter, M.B.: Specifications of nanoscale devices and circuits for neuromorphic computational systems. IEEE Trans. Electr. Devices 60(1), 246–253 (2013)
Rumelhart, D., Hinton, G.E., McClelland, J.L.: A general framework for parallel distributed processing. In: Parallel Distributed Processing. MIT Press (1986)
Suri, M., Bichler, O., Querlioz, D., Cueto, O., Perniola, L., Sousa, V., Vuillaume, D., Gamrat, C., DeSalvo, B.: Phase change memory as synapse for ultra–dense neuromorphic systems: application to complex visual pattern extraction. In: IEDM Technical Digest, p. 4.4 (2011)
Suri, M., Bichler, O., Querlioz, D., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., DeSalvo, B.: CBRAM devices as binary synapses for low–power stochastic neuromorphic systems: auditory (cochlea) and visual (retina) cognitive processing applications. In: IEDM Technical Digest, p. 10.3 (2012)
Yu, S., Gao, B., Fang, Z., Yu, H., Kang, J., Wong, H.S.P.: A neuromorphic visual system using RRAM synaptic devices with sub–pj energy and tolerance to variability: experimental characterization and large–scale modeling. In: IEDM Technical Digest, p. 10.4 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer (India) Pvt. Ltd.
About this chapter
Cite this chapter
Sidler, S. et al. (2017). Nonvolatile Memory Crossbar Arrays for Non-von Neumann Computing. In: Suri, M. (eds) Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices. Cognitive Systems Monographs, vol 31. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3703-7_7
Download citation
DOI: https://doi.org/10.1007/978-81-322-3703-7_7
Published:
Publisher Name: Springer, New Delhi
Print ISBN: 978-81-322-3701-3
Online ISBN: 978-81-322-3703-7
eBook Packages: EngineeringEngineering (R0)