Neuromemristive Systems: A Circuit Design Perspective

Chapter
Part of the Cognitive Systems Monographs book series (COSMOS, volume 31)

Abstract

Neuromemristive systems (NMSs) are brain inspired, adaptive computer architectures based on emerging resistive memory technology (memristors). NMSs adopt a mixed-signal design approach with closely coupled memory and processing, resulting in high area and energy efficiencies. Existing work suggests that NMSs could even supplant conventional architectures in niche application domains. However, given the infancy of the field, there are still a number open design questions, particularly in the area of circuit realization, that must be explored in order for the research to move forward. This chapter reviews a number of theoretical and practical concepts related to NMS circuit design, with particular focus on neuron, synapse, and plasticity circuits.

References

  1. 1.
    Mead, C.: Analog VLSI and Neural Systems. Addison-Wesley (1989)Google Scholar
  2. 2.
    Sinha, A., Kulkarni, M.S., Teuscher, C.: Evolving nanoscale associative memories with memristors. In: IEEE International Conference on Nanotechnology, pp. 861–864 (2011)Google Scholar
  3. 3.
    Hu, M., Li, H., Wu, Q., Rose, G.S., Chen, Y.: Memristor crossbar based hardware realization of BSB recall function. In: International Joint Conference on Neural Networks, IJCNN’12, June 2012, pp. 1–7. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6252563
  4. 4.
    Kulkarni, M.S.: Memristor-based reservoir computing. In: Nanoarch, pp. 226–232 (2012)Google Scholar
  5. 5.
    Laiho, M., Lehtonen, E.: Cellular nanoscale network cell with memristors for local implication logic and synapses. In: International Symposium on Circuits and Systems, pp. 2051–2054, May 2010Google Scholar
  6. 6.
    Ebong, I.E., Mazumder, P.: CMOS and memristor-based neural network design for position detection. Proc. IEEE 100(6), 2050–2060 (2012)CrossRefGoogle Scholar
  7. 7.
    Adhikari, S.P., Yang, C., Kim, H., Chua, L.O.: Memristor bridge synapse-based neural network and its learning. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1426–1435 (2012)CrossRefGoogle Scholar
  8. 8.
    Querlioz, D., Bichler, O., Gamrat, C.: Simulation of a memristor-based spiking neural network immune to device variations. In: The 2011 International Joint Conference on Neural Networks, pp. 1775–1781, Jul 2011. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6033439
  9. 9.
    Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., Desalvo, B.: Bio-inspired stochastic computing using binary CBRAM synapses. IEEE Trans. Electron Devices 60(7), 2402–2409 (2013)Google Scholar
  10. 10.
    Merkel, C., Kudithipudi, D.: Neuromemristive extreme learning machines for pattern classification. In: International Symposium on VLSI, pp. 77–82 (2014)Google Scholar
  11. 11.
    ITRS: International technology roadmap for semiconductors (2013). http://www.itrs.net
  12. 12.
    Chua, L.: Memristor—The missing circuit element. IEEE Trans. Circuit Theory CT-18(5), 507–519 (1971)Google Scholar
  13. 13.
    Chua, L., Kang, S.-M.: Memristive devices and systems, vol. 64, no. 2 (1976)Google Scholar
  14. 14.
    Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)CrossRefMATHGoogle Scholar
  15. 15.
    Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23269430
  16. 16.
    Kuzum, D., Yu, S., Wong, H.-S.P.: Synaptic electronics: materials, devices and applications. Nanotechnology, 24(38), 382001 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23999572
  17. 17.
    Ishigaki, T., Kawahara, T., Takemura, R., Ono, K., Ito, K., Matsuoka, H., Ohno, H.: A multi-level-cell spin-transfer torque memory with series-stacked magnetotunnel junctions. In: Symposium on VLSI Technology, pp. 47–48 (2010)Google Scholar
  18. 18.
    Waser, R., Dittmann, R., Staikov, R., Szot, K.: Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. In: Advanced Materials, vol. 21, no. 25–26, pp. 2632–2663, July 2009. http://doi.wiley.com/10.1002/adma.200900375
  19. 19.
    Ha, S.D., Ramanathan, S.: Adaptive oxide electronics: a review. J. Appl. Phys. 110(7), 071 101–1 (2011). http://link.aip.org/link/JAPIAU/v110/i7/p071101/s1&Agg=doi
  20. 20.
    Yu, S., Lee, B., Wong, H.S.P.: Metal oxide resistive switching memory. In: Wu, J., Cao, J., Han, W.-Q., Janotti, H.A., Kim, H.-C. (eds.) Functional Metal Oxide Nanostructures. Springer Series in Materials Science, vol. 149, pp. 303–335. Springer, New York (2012)Google Scholar
  21. 21.
    Yang, Y., Lu, W.: Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5(21), 10 076–92 (2013)Google Scholar
  22. 22.
    Strukov, D.B., Williams, R.S.: Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94(3), 515–519 (2008)CrossRefGoogle Scholar
  23. 23.
    Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008)CrossRefGoogle Scholar
  24. 24.
    Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)CrossRefGoogle Scholar
  25. 25.
    Mcdonald, N.R.: Al/CuxO/Cu memristive devices: fabrication, characterization, and modeling. Master’s Thesis, SUNY Albany (2012)Google Scholar
  26. 26.
    Biolek, Z., Biolek, D., Biolková, V.: SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)Google Scholar
  27. 27.
    Rak, A., Cserey, G.: Macromodeling of the memristor in SPICE. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632–636 (2010)CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Zhang, X., Yu, J.: Approximated SPICE model for memristor. In: 2009 International Conference on Communications, Circuits and Systems, no. 5, pp. 928–931, July 2009. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5250371
  29. 29.
    Batas, D., Fiedler, H.: A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250–255, Mar 2011. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5373921
  30. 30.
    Yakopcic, C., Taha, T., Subramanyam, G., Pino, R.: Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time. In: International Joint Conference on Neural Networks, pp. 464–470 (2013)Google Scholar
  31. 31.
    Chen, Y., Wang, X.: Compact modeling and corner analysis of spintronic memristor invited paper. In: IEEE/ACM International Symposium on Nanoscale Architectures, pp. 7–12 (2009)Google Scholar
  32. 32.
    Shin, S., Kim, K., Kang, S.-M.: Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 590–598 (2010)CrossRefGoogle Scholar
  33. 33.
    Sheridan, P., Kim, K.-H., Gaba, S., Chang, T., Chen, L., Lu, W.: Device and SPICE modeling of RRAM devices. Nanoscale 3(9), 3833–3840 (2011)CrossRefGoogle Scholar
  34. 34.
    Gilbert, B.: Translinear circuits: a proposed classification. Electron. Lett. 11(1), 14 (1975). http://digital-library.theiet.org/content/journals/10.1049/el_19750011
  35. 35.
    Toumazou, C., Lidgey, F.J., Haigh, D.G. (eds.): Analogue IC Design: The Current-mode Approach. Peter Peregrinus Ltd. (1990)Google Scholar
  36. 36.
    Manem, H., Rajendran, J., Rose, G.S.: Stochastic gradient descent inspired training technique for a CMOS/Nano memristive trainable threshold gate array. IEEE Trans. Circuits Syst. 59(5), 1051–1060 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Soltiz, M., Member, S., Kudithipudi, D., Merkel, C., Rose, G.S., Pino, R.E.: Memristor-based neural logic blocks for non-linearly separable functions. IEEE Trans. Comput. 62(8), 1597–1606 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)CrossRefGoogle Scholar
  39. 39.
    Hasan, R., Taha, T.M.: Enabling back propagation training of memristor crossbar neuromorphic processors. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 21–28. IEEE, July 2014. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6889893
  40. 40.
    Indiveri, G., Linares-Barranco, B., Hamilton, T.J., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.-C., Dudek, P., äfliger, P. H., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3130465&tool=pmcentrez&rendertype=abstract
  41. 41.
    Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958). http://www.ncbi.nlm.nih.gov/pubmed/13602029
  42. 42.
    Minsky, M., Papert, S.: Perceptrons—Expanded edition: An Introduction to Computational Geometry. MIT Press (1987)Google Scholar
  43. 43.
    Kandel, E.J., Schwartz, J. H., Jessell, T.J., Siegelbaum, S.A., Hudspeth, A. J.: Principles of Neural Science, 5th edn. McGraw Hill (2013)Google Scholar
  44. 44.
    Soudry, D., Castro, D. D., Gal, A., Kolodny, A., Kvatinsky, S.: Memristor-based multilayer neural networks with online gradient descent training. IEEE Trans. Neural Netw. Learn. Syst. 1–14 (2015)Google Scholar
  45. 45.
    Karlik, B.: Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 1(4), 111–122 (2015)Google Scholar
  46. 46.
    Wilamowski, B.M.: Understanding neural networks. In: Wilamowski, B.M., Irwin, J.D. (eds.) Intelligent Systems (Industrial Electronics), 2nd edn., Chap. 5, pp. 5–1. CRC Press (2011)Google Scholar
  47. 47.
    Merkel, C., Kudithipudi, D., Sereni, N.: Periodic activation functions in memristor-based analog neural networks. In: International Joint Conference on Neural Networks, pp. 1–7 (2013)Google Scholar
  48. 48.
    Attwell, D., Laughlin, B.: Energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. Off. Int. Soc. Cereb. Blood Flow Metab. 21(10), 1133–1145 (2001). http://www.ncbi.nlm.nih.gov/pubmed/11598490
  49. 49.
    Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., Linares-Barranco, B.: STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 7, 2 (2013). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3575074&tool=pmcentrez&rendertype=abstract
  50. 50.
    Panzeri, S., Brunel, N., Logothetis, N.K., Kayser, C.: Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 33(3), 111–120 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20045201
  51. 51.
    Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.-S., White, L.E.: Neuroscience, 5th edn. Sinauer Associates, Inc. (2012)Google Scholar
  52. 52.
    Merkel, C., Kudithipudi, D.: A stochastic learning algorithm for neuromemristive systems. In: System on Chip Conference, pp. 359–364 (2014)Google Scholar
  53. 53.
    Widrow, B.: An adaptive “ADALINE” neuron using chemical “Memistors”. Stanford University, Tech. Rep. (1960)Google Scholar
  54. 54.
    Merkel, C., Kudithipudi, D.: IEEE National Aerospace and Electronics Conference, NAECON’15. IEEE (2015)Google Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  1. 1.Department of Computer EngineeringRochester Institute of TechnologyRochesterUSA

Personalised recommendations