Free-Space Optical Channel Models

  • Hemani Kaushal
  • V. K. Jain
  • Subrat Kar
Part of the Optical Networks book series (OPNW)


This chapter focuses on statistical description, physical characteristics, and modeling of free-space optical channel. The primary factors characterizing an atmospheric communication channel include atmospheric attenuation (both due to scattering and absorption) and turbulence. This chapter will provide good understanding of various types of atmospheric losses due to absorption, scattering, and turbulence. Section 2.1 presents various types of atmospheric losses due to molecular constituents and particulates present in the atmosphere. Although absorption and scattering significantly decrease the power level of the transmitted beam, the random fluctuations in the intensity of received signal due to turbulence in the atmosphere can severely degrade the wavefront quality of the transmitted beam. Statistical description of atmospheric turbulence and its effect on Gaussian beam will be discussed in this section. Section 2.2 presents various turbulence channel models. Finally, Sect. 2.3 describes various techniques to mitigate the effect of atmospheric turbulence.


Gaussian Beam Atmospheric Turbulence Scintillation Index Adaptive Optic System Atmospheric Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.N. Clark, Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy & in Manual of Remote Sensing (Chapter 1 ), vol. 3. (Wiley, New York, 1999) (Disclaimer: This image is from a book chapter that was produced by personnel of the US Government therefore it cannot be copyrighted and is in the public domain)Google Scholar
  2. 2.
    R.M. Gagliardi, S. Karp, Optical Communications, 2nd edn. (Wiley, New York, 1995)Google Scholar
  3. 3.
    R.K. Long, Atmospheric attenuation of ruby lasers. Proc. IEEE 51 (5), 859–860 (1963)CrossRefGoogle Scholar
  4. 4.
    R.M. Langer, Effects of atmospheric water vapour on near infrared transmission at sea level, in Report on Signals Corps Contract DA-36-039-SC-723351 (J.R.M. Bege Co., Arlington, 1957)Google Scholar
  5. 5.
    A.S. Jursa, Handbook of Geophysics and the Space Environment (Scientific Editor, Air Force Geophysics Laboratory, Washington, DC, 1985)Google Scholar
  6. 6.
    H. Willebrand, B.S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks (SAMS publishing, Indianapolis, 2002)Google Scholar
  7. 7.
    M. Rouissat, A.R. Borsali, M.E. Chiak-Bled, Free space optical channel characterization and modeling with focus on algeria weather conditions. Int. J. Comput. Netw. Inf. Secur. 3, 17–23 (2012)Google Scholar
  8. 8.
    H.C. Van de Hulst, Light Scattering by Small Particles (Dover publications, Inc., New York, 1981)Google Scholar
  9. 9.
    P. Kruse, L. McGlauchlin, R. McQuistan, Elements of Infrared Technology: Generation, Transmission and Detection (Wiley, New York, 1962)Google Scholar
  10. 10.
    I.I. Kim, B. McArthur, E. Korevaar, Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. Proc. SPIE 4214, 26–37 (2001)CrossRefGoogle Scholar
  11. 11.
    M.A. Naboulsi, H. Sizun, F. de Fornel, Fog attenuation prediction for optical and infrared waves. J. SPIE Opt. Eng. 43, 319–329 (2004)CrossRefGoogle Scholar
  12. 12.
    I.I. Kim, E. Korevaar, Availability of free space optics (FSO) and hybrid FSO/RF systems. Lightpointe technical report. [Weblink:]
  13. 13.
    Z. Ghassemlooy, W.O. Popoola, Terrestrial free-space optical communications, in Mobile and Wireless Communications Network Layer and Circuit Level Design, ed. by S.A. Fares, F. Adachi (InTech, 2010), doi:10.5772/7698. [Weblink:]
  14. 14.
    W.K. Hocking, Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: a review. Radio Sci. 20 (6), 1403–1422 (1985)CrossRefGoogle Scholar
  15. 15.
    R. Latteck, W. Singer, W.K. Hocking, Measurement of turbulent kinetic energy dissipation rates in the mesosphere by a 3 MHz Doppler radar. Adv. Space Res. 35 (11), 1905–1910 (2005)CrossRefGoogle Scholar
  16. 16.
    L.C. Andrews, R.L. Phillips, Laser Beam Propagation Through Random Medium, 2nd edn. (SPIE Optical Engineering Press, Bellinghan, 1988)Google Scholar
  17. 17.
    H.E. Nistazakis, T.A. Tsiftsis, G.S. Tombras, Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Commun. 3 (8), 1402–1409 (2009)CrossRefGoogle Scholar
  18. 18.
    P.J. Titterton, Power reduction and fluctuations caused by narrow laser beam motion in the far field. Appl. Opt. 12 (2), 423–425 (1973)CrossRefGoogle Scholar
  19. 19.
    J.H. Churnside, R.J. Lataitis, Wander of an optical beam in the turbulent atmosphere. Appl. Opt. 29 (7), 926–930 (1990)CrossRefGoogle Scholar
  20. 20.
    R.R. Beland, Propagation through atmospheric optical turbulence, in The Infrared and Electro-Optical Systems Handbook, vol. 2 (SPIE Optical Engineering Press, Bellinghan, 1993)Google Scholar
  21. 21.
    H. Hemmati, Near-Earth Laser Communications (CRC Press/Taylor & Francis Group, Boca Raton, 2009)CrossRefGoogle Scholar
  22. 22.
    L.C. Andrews, R.L. Phillips, R.J. Sasiela, R.R. Parenti, Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects. Opt. Eng. 45 (7), 076001-1–076001-12 (2006)Google Scholar
  23. 23.
    H.T. Yura, W.G. McKinley, Optical scintillation statistics for IR ground-to-space laser communication systems. Appl. Opt. 22 (21), 3353–3358 (1983)CrossRefGoogle Scholar
  24. 24.
    J. Parikh, V.K. Jain, Study on statistical models of atmospheric channel for FSO communication link, in Nirma University International Conference on Engineering-(NUiCONE), Ahmedabad (2011), pp. 1–7Google Scholar
  25. 25.
    H.G. Sandalidis, Performance analysis of a laser ground-station-to-satellite link with modulated gamma-distributed irradiance fluctuations. J. Opt. Commun. Netw. 2 (11), 938–943 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Park, E. Lee, G. Yoon, Average bit-error rate of the Alamouti scheme in gamma-gamma fading channels. IEEE Photonics Technol. Lett. 23 (4), 269–271 (2011)CrossRefGoogle Scholar
  27. 27.
    M.A. Kashani, M. Uysal, M. Kavehrad, A Novel Statistical Channel Model for Turbulence-Induced Fading in Free-Space Optical Systems. PhD thesis, Cornell University, 2015Google Scholar
  28. 28.
    A.K. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge University Press, Cambridge, 2006)Google Scholar
  29. 29.
    L.C. Andrews, W.B. Miller, Single-pass and double-pass propagation through complex paraxial optical systems. J. Opt. Soc. Am. 12 (1), 137–150 (1995)CrossRefGoogle Scholar
  30. 30.
    L.C. Andrews, R.L. Phillips, P.T. Yu, Optical scintillation and fade statistics for a satellite-communication system. Appl. Opt. 34 (33), 7742–7751 (1995)CrossRefGoogle Scholar
  31. 31.
    H. Guo, B. Luo, Y. Ren, S. Zhao, A. Dang, Influence of beam wander on uplink of ground-to-satellite laser communication and optimization for transmitter beam radius. Opt. Lett. 35 (12), 1977–1979 (2010)CrossRefGoogle Scholar
  32. 32.
    N.G. Van Kampen, Stochastic differential equations. Phys. Rep. (Sect. C Phys. Lett.) 24 (3), 171–228 (1976)Google Scholar
  33. 33.
    B.J. Uscinski, The Elements of Wave Propagation in Random Media (McGraw-Hill, New York, 1977)Google Scholar
  34. 34.
    H.T. Yura, S.G. Hanson, Second-order statistics for wave propagation through complex optical systems. J. Opt. Soc. Am. A 6 (4), 564–575 (1989)CrossRefGoogle Scholar
  35. 35.
    S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Wave Propagation Through Random Media, vol. 4 (Springer, Berlin, 1989)zbMATHGoogle Scholar
  36. 36.
    N.S. Kopeika, A. Zilberman, Y. Sorani, Measured profiles of aerosols and turbulence for elevations of 2–20 km and consequences on widening of laser beams. Proc. SPIE Opt. Pulse Beam Propag. III 4271 (43), 43–51 (2001)Google Scholar
  37. 37.
    A. Zilberman, N.S. Kopeika, Y. Sorani, Laser beam widening as a function of elevation in the atmosphere for horizontal propagation. Proc. SPIE Laser Weapons Tech. II 4376 (177), 177–188 (2001)CrossRefGoogle Scholar
  38. 38.
    G.C. Valley, Isoplanatic degradation of tilt correction and short-term imaging systems. Appl. Opt. 19 (4), 574–577 (1980)CrossRefGoogle Scholar
  39. 39.
    D.H. Tofsted, S.G. O’Brien, G.T. Vaucher, An atmospheric turbulence profile model for use in army wargaming applications I. Technical report ARL-TR-3748, US Army Research Laboratory (2006)Google Scholar
  40. 40.
    E. Oh, J. Ricklin, F. Eaton, C. Gilbreath, S. Doss-Hammel, C. Moore, J. Murphy, Y. Han Oh, M. Stell, Estimating atmospheric turbulene using the PAMELA model. Proc. SPIE Free Space Laser Commun. IV 5550, 256–266 (2004)CrossRefGoogle Scholar
  41. 41.
    S. Doss-Hammel, E. Oh, J. Ricklinc, F. Eatond, C. Gilbreath, D. Tsintikidis, A comparison of optical turbulence models. Proc. SPIE Free Space Laser Commun. IV 5550, 236–246 (2004)CrossRefGoogle Scholar
  42. 42.
    S. Karp, R.M. Gagliardi, S.E. Moran, L.B. Stotts, Optical Channels: Fibers, Clouds, Water, and the Atmosphere. (Plenum Press, New York/London, 1988)Google Scholar
  43. 43.
    R.E. Hufnagel, N.R. Stanley, Modulation transfer function associated with image transmission through turbulence media. J. Opt. Soc. Am. 54 (52), 52–62 (1964)CrossRefGoogle Scholar
  44. 44.
    R.K. Tyson, Adaptive optics and ground to space laser communication. Appl. Opt. 35 (19), 3640–3646 (1996)CrossRefGoogle Scholar
  45. 45.
    R.E. Hugnagel, Variation of atmospheric turbulence, in Digest of Topical Meeting on Optical Propagation Through Turbulence (Optical Society of America, Washington, DC, 1974), p. WA1Google Scholar
  46. 46.
    A.S. Gurvich, A.I. Kon, V.L. Mironov, S.S. Khmelevtsov, Laser Radiation in Turbulent Atmosphere (Nauka Press, Moscow, 1976)Google Scholar
  47. 47.
    M.R. Chatterjee, F.H.A. Mohamed, Modeling of power spectral density of modified von Karman atmospheric phase turbulence and acousto-optic chaos using scattered intensity profiles over discrete time intervals. Proc. SPIE Laser Commun. Prop. Atmosp. Oce. III 9224, 922404-1–922404-16 (2014)Google Scholar
  48. 48.
    V.I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, Jerusalem, 1971)Google Scholar
  49. 49.
    M.C. Roggermann, B.M. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, 1996)Google Scholar
  50. 50.
    H. Hemmati (ed.), Near-Earth Laser Communications (CRC Press, Boca Raton, 2009)Google Scholar
  51. 51.
    T.E. Van Zandt, K.S. Gage, J.M. Warnock, An improve model for the calculation of profiles of wind, temperature and humidity, in Twentieth Conference on Radar Meteorology (American Meteorological Society, Boston, 1981), pp. 129–135Google Scholar
  52. 52.
    E.M. Dewan, R.E. Good, R. Beland, J. Brown, A model for C n 2 (optical turbulence) profiles using radiosonde data. Environmental Research Paper-PL-TR-93-2043 1121, Phillips Laboratory, Hanscom, Airforce base (1993)Google Scholar
  53. 53.
    E.J. Lee, V.W.S. Chan, Optical communications over the clear turbulent atmospheric channel using diversity: part 1. IEEE J. Sel. Areas Commun. 22 (9), 1896–1906 (2004)CrossRefGoogle Scholar
  54. 54.
    A.L. Buck, Effects of the atmosphere on laser beam propagation. Appl. Opt. 6 (4), 703–708 (1967)CrossRefGoogle Scholar
  55. 55.
    H. Weichel, Laser Beam Propagation in the Atmosphere (SPIE Press, Washington, DC, 1990)Google Scholar
  56. 56.
    S. Bloom, The physics of free space optics. Technical report, AirFiber, Inc. (2002)Google Scholar
  57. 57.
    D.L. Fried, Aperture averaging of scintillation. J. Opt. Soc. Am. 57 (2), 169–172 (1967)CrossRefGoogle Scholar
  58. 58.
    T.A. Tsiftsis, H.G. Sandalidis, G.K. Karagiannidis, M. Uysal, Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Trans. Wirel. Commun. 8 (2), 951–957 (2009)CrossRefGoogle Scholar
  59. 59.
    S.M. Navidpour, M. Uysal, M. Kavehrad, BER performance of free-space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 6 (8), 2813–2819 (2007)CrossRefGoogle Scholar
  60. 60.
    A.D. Wyner, Capacity and error exponent for the direct detection photon channel – part 1. IEEE Trans. Inf. Theory 34 (6), 1449–1461 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    W. Haiping, M. Kavehrad, Availability evaluation of ground-to-air hybrid FSO/RF links. J. Wirel. Inf. Netw. (Springer) 14 (1), 33–45 (2007)Google Scholar
  62. 62.
    H. Moradi, M. Falahpour, H.H. Refai, P.G. LoPresti, M. Atiquzzaman, On the capacity of hybrid FSO/RF links, in Proceedings of IEEE, Globecom (2010)Google Scholar
  63. 63.
    Y. Tang, M. Brandt-Pearce, S. Wilson, Adaptive coding and modulation for hybrid FSO/RF systems, in Proceeding of IEEE, 43rd Asilomar Conference on Signal, System and Computers, Pacific Grove (2009)Google Scholar
  64. 64.
    E. Ali, V. Sharma, P. Hossein, Hybrid channel codes for efficient FSO/RF communication systems. IEEE. Trans. Commun. 58 (10), 2926–2938 (2010)CrossRefGoogle Scholar
  65. 65.
    D.K. Kumar, Y.S.S.R. Murthy, G.V. Rao, Hybrid cluster based routing protocol for free-space optical mobile ad hoc networks (FSO/RF MANET), in Proceedings of the International Conference on Frontiers of Intelligent Computing, vol. 199 (Springer, Berlin/Heidelberg, 2013), pp. 613–620Google Scholar
  66. 66.
    J. Derenick, C. Thorne, J. Spletzer, Hybrid Free-space Optics/Radio Frequency (FSO/RF) networks for mobile robot teams, in Multi-Robot Systems: From Swarms to Intelligent Automata, ed. by A.C. Schultz, L.E. Parke (Springer, 2005)Google Scholar
  67. 67.
    S. Chia, M. Gasparroni, P. Brick, The next challenge for cellular networks: backhaul. Proc. IEEE Microw. Mag. 10 (5), 54–66 (2009)CrossRefGoogle Scholar
  68. 68.
    C. Milner, S.D. Davis, Hybrid free space optical/RF networks for tactical operations, in Military Communications Conference (MILCOM), Monterey (2004)Google Scholar
  69. 69.
    A. Kashyap, M. Shayman, Routing and traffic engineering in hybrid RF/FSO networks, in IEEE International Conference on Communications (2005)Google Scholar
  70. 70.
    B. Liu, Z. Liu, D. Towsley, On the capacity of hybrid wireless network, in IEEE INFOCOM’03 (2003)Google Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  • Hemani Kaushal
    • 1
  • V. K. Jain
    • 2
  • Subrat Kar
    • 2
  1. 1.Electronics and CommunicationThe NorthCap UniversityGurgaonIndia
  2. 2.Electrical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations