Skip to main content

Circadian Clocks, Metabolism, and Food-Entrained Rhythms

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

The circadian clock is one of the most conserved systems in mammals. It is an important regulator of many biological processes, such as the sleep-wake cycle, hormone secretion, and body temperature, which can influence both cellular and organ-level metabolic functioning. At the molecular level, the circadian system consists of autoregulatory feedback loop that dictates the timing of behavioral and physiological processes. This molecular clock is persistent in all of the central and peripheral tissues. Metabolism can also affect the circadian clock via feeding, or by metabolites which expression is controlled by food intake. Therefore, the current chapter emphasizes the cross-talk between the circadian system and metabolism at the molecular level, and its physiological outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panda S, Hogenesch JB, Kay SA (2002) Circadian rhythms from flies to human. Nature 417:329–335

    Article  CAS  PubMed  Google Scholar 

  2. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  3. Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7:1626–1638

    CAS  PubMed  Google Scholar 

  4. Saini C, Suter DM, Liani A, Gos P, Schibler U (2011) The mammalian circadian timing system: synchronization of peripheral clocks. Cold Spring Harb Symp Quant Biol 76:39–47

    Article  CAS  PubMed  Google Scholar 

  5. Crane BR, Young MW (2014) Interactive features of proteins composing eukaryotic circadian clocks. Annu Rev Biochem 83:191–219

    Article  CAS  PubMed  Google Scholar 

  6. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308:1043–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci 105:15172–15177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci 102:12071–12076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, Amin RH, Granneman JG, Piomelli D, Leff T, Sassone-Corsi P (2010) PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab 12:509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M, Evans RM (2011) Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480:552–556

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  14. Everett LJ, Lazar MA (2014) Nuclear receptor Rev-erbα: up, down, and all around. Trends Endocrinol Metab 25:586–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesselink MK, Paquet C, Delhaye S, Shin Y, Kamenecka TM, Schaart G, Lefebvre P, Nevière R, Burris TP, Schrauwen P, Staels B, Duez H (2013) Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 19:1039–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, Jager J, Lazar MA (2012) Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 26:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong LW, DiTacchio L, Atkins AR, Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM (2012) Regulation of circadian behavior and metabolism by Rev-erbα and Rev-erbβ. Nature 485:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Solt LA, Wang Y, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, Shin Y, Liu J, Cameron MD, Noel R, Yoo SH, Takahashi JS, Butler AA, Kamenecka TM, Burris TP (2012) Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485:62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5:e34

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garaulet M, Lee YC, Shen J, Parnell LD, Arnett DK, Tsai MY, Lai CQ, Ordovas JM (2009) CLOCK genetic variation and metabolic syndrome risk: modulation by monounsaturated fatty acids. Am J Clin Nutr 90:1466–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garaulet M, Lee YC, Shen J, Parnell LD, Arnett DK, Tsai MY, Lai CQ, Ordovas JM (2010) Genetic variants in human CLOCK associate with total energy intake and cytokine sleep factors in overweight subjects (GOLDN population). Eur J Hum Genet 18:364–369

    Article  CAS  PubMed  Google Scholar 

  22. Sookoian S, Gemma C, Gianotti TF, Burgueño A, Castaño G, Pirola CJ (2008) Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am J Clin Nutr 87:1606–1615

    CAS  PubMed  Google Scholar 

  23. Pappa KI, Gazouli M, Anastasiou E, Iliodromiti Z, Antsaklis A, Anagnou NP (2013) The major circadian pacemaker ARNT-like protein-1 (BMAL1) is associated with susceptibility to gestational diabetes mellitus. Diabetes Res Clin Pract 99:151–157

    Article  CAS  PubMed  Google Scholar 

  24. Woon PY, Kaisaki PJ, Bragança J, Bihoreau MT, Levy JC, Farrall M, Gauguier D (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci 104:14412–14417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Englund A, Kovanen L, Saarikoski ST, Haukka J, Reunanen A, Aromaa A, Lönnqvist J, Partonen T (2009) NPAS2 and PER2 are linked to risk factors of the metabolic syndrome. J Circadian Rhythms 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Garaulet M, Corbalán-Tutau MD, Madrid JA, Baraza JC, Parnell LD, Lee YC, Ordovas JM (2010) PERIOD2 variants are associated with abdominal obesity, psycho-behavioral factors, and attrition in the dietary treatment of obesity. J Am Diet Assoc 110:917–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, Lindgren CM, Mägi R (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu C, Li H, Qi L, Loos RJ, Qi Q, Lu L, Gan W, Lin X (2011) Variants in GLIS3 and CRY2 are associated with type 2 diabetes and impaired fasting glucose in Chinese Hans. PLoS One 6:e21464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci 106:21453–21458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gachon F, Olela FF, Schaad O, Descombes P, Schibler U (2006) The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 4:25–36

    Article  CAS  PubMed  Google Scholar 

  31. Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15:995–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hirota T, Kon N, Itagaki T, Hoshina N, Okano T, Fukada Y (2010) Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes Cells 15:111–121

    Article  CAS  PubMed  Google Scholar 

  33. Jeyaraj D, Scheer FA, Ripperger JA, Haldar SM, Lu Y, Prosdocimo DA, Eapen SJ, Eapen BL, Cui Y, Mahabeleshwar GH, Lee HG, Smith MA, Casadesus G, Mintz EM, Sun H, Wang Y, Ramsey KM, Bass J, Shea SA, Albrecht U, Jain MK (2012) Klf15 orchestrates circadian nitrogen homeostasis. Cell Metab 15:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810

    Article  CAS  PubMed  Google Scholar 

  35. Schug TT, Li X (2011) Sirtuin 1 in lipid metabolism and obesity. Ann Med 43:198–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    Article  CAS  PubMed  Google Scholar 

  37. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  39. Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  CAS  PubMed  Google Scholar 

  41. Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481

    Article  CAS  PubMed  Google Scholar 

  42. Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    Article  CAS  PubMed  Google Scholar 

  43. Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–953, Epub 2002 Sep 3

    Article  CAS  PubMed  Google Scholar 

  44. Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y (2002) Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J Biol Chem 277:44244–44251

    Article  CAS  PubMed  Google Scholar 

  45. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oishi K, Uchida D, Ohkura N, Doi R, Ishida N, Kadota K (2009) Ketogenic diet disrupts the circadian clock and increases hypofibrinolytic risk by inducing expression of plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 29:1571–1577

    Article  CAS  PubMed  Google Scholar 

  47. Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S, Dilag-Penilla SA, Dyar KA, Baldi P, Sassone-Corsi P (2013) Reprogramming of the circadian clock by nutritional challenge. Cell 155:1464–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stephan FK, Swann JM, Sisk CL (1979) Anticipation of 24-h feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav Neural Biol 25:346–363

    Article  CAS  PubMed  Google Scholar 

  50. Mistlberger RE, Rusak B (1988) Food-anticipatory circadian rhythms in rats with paraventricular and lateral hypothalamic ablations. J Biol Rhythms 3:277–291

    Article  Google Scholar 

  51. Krieger DT (1980) Ventromedial hypothalamic lesions abolish food-shifted circadian adrenal and temperature rhythmicity. Endocrinology 106:649–654

    Article  CAS  PubMed  Google Scholar 

  52. Moreira AC, Krieger DT (1982) The effects of subdiaphragmatic vagotomy on circadian corticosterone rhythmicity in rats with continuous or restricted food access. Physiol Behav 28:787–790

    Article  CAS  PubMed  Google Scholar 

  53. Davidson AJ, Aragona BJ, Werner RM, Schroeder E, Smith JC, Stephan FK (2001) Food-anticipatory activity persists after olfactory bulb ablation in the rat. Physiol Behav 72:231–235

    Article  CAS  PubMed  Google Scholar 

  54. Escobar C, Mendoza JY, Salazar-Juarez A, Avila J, Hernandez- Munoz R, Diaz-Munoz M, Aguilar-Roblero R (2002) Rats made cirrhotic by chronic CCl4 treatment still exhibit anticipatory activity to a restricted feeding schedule. Chronobiol Int 19:1073–1086

    Article  CAS  PubMed  Google Scholar 

  55. Comperatore CA, Stephan FK (1990) Effects of vagotomy on entrainment of activity rhythms to food access. Physiol Behav 47:671–678

    Article  CAS  PubMed  Google Scholar 

  56. Mistlberger RE, Antle MC, Kilduff TS, Jones M (2003) Food- and light-entrained circadian rhythms in rats with hypocretin-2-saporin ablations of the lateral hypothalamus. Brain Res 980:161–168

    Article  CAS  PubMed  Google Scholar 

  57. Mistlberger RE, Antle MC (1999) Neonatal monosodium glutamate alters circadian organization of feeding, food anticipatory activity and photic masking in the rat. Brain Res 842:73–83

    Article  CAS  PubMed  Google Scholar 

  58. Mistlberger RE, Rechtschaffen A (1984) Recovery of anticipatory activity to restricted feeding in rats with ventromedial hypothalamic lesions. Physiol Behav 33:227–235

    Article  CAS  PubMed  Google Scholar 

  59. Mendoza J, Angeles-Castellanos M, Escobar C (2005) Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats. Behav Brain Res 158:133–142

    Article  PubMed  Google Scholar 

  60. Mistlberger RE, Mumby DG (1992) The limbic system and food-anticipatory circadian rhythms in the rat: ablation and dopamine blocking studies. Behav Brain Res 47:159–168

    Article  CAS  PubMed  Google Scholar 

  61. Davidson AJ (2009) Lesion studies targeting food-anticipatory activity. Eur J Neurosci 30:1658–1664

    Article  PubMed  Google Scholar 

  62. Davidson AJ, Aragona BJ, Houpt TA, Stephan FK (2001) Persistence of meal-entrained circadian rhythms following area postrema lesions in the rat. Physiol Behav 74:349–354

    Article  CAS  PubMed  Google Scholar 

  63. Davidson AJ, Susan L, Cappendijk T, Stephan FK (2000) Feeding-entrained circadian rhythms are attenuated by lesions of the parabrachial region in rats. Am J Physiol Regul Integr Comp Physiol 278:R1296–R1304

    CAS  PubMed  Google Scholar 

  64. Bernardis LL, Bellinger LL (1998) The dorsomedial hypothalamic nucleus revisited: 1998 update. Exp Biol Med 218:284–306

    Article  CAS  Google Scholar 

  65. Gooley JJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 9:398–407

    Article  CAS  PubMed  Google Scholar 

  66. Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A 103:12150–12155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Landry GJ, Simon M, Webb IC, Mistlberger RE (2006) Persistence of a behavioral food anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am J Physiol – Reg I 290:R1524–R1526

    Google Scholar 

  68. Landry GJ, Kent BA, Patton DF, Jaholkowski M, Marchant EG, Mistlberger RE (2011) Evidence for time-of-day dependent effect of neurotoxic dorsomedial hypothalamic lesions on food anticipatory circadian rhythms in rats. PLoS One 6:e24187. doi:10.1371/journal.pone.0024187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ángeles-Castellanos M, Aguilar-Roblero R, Escobar C (2004) c-Fos expression in hypothalamic nuclei of food-entrained rats. Am J Physiol Regul Integr Comp Physiol 286:R158–R165

    Article  PubMed  Google Scholar 

  70. Angeles-Castellanos M, Mendoza J, Díaz-Muñoz M, Escobar C (2005) Food entrainment modifies the c-Fos expression pattern in brain stem nuclei of rats. Am J Physiol Regul Integr Comp Physiol 288:R678–R684

    Article  CAS  PubMed  Google Scholar 

  71. Ángeles-Castellanos M, Mendoza J, Escobar C (2007) Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Neuroscience 144:344–355

    Article  PubMed  Google Scholar 

  72. Pereira de Vasconcelos AP, Bartol-Munier I, Feillet CA, Gourmelen S, Pevet P, Challet E (2006) Modifications of local cerebral glucose utilization during circadian food-anticipatory activity. Neuroscience 139:741–748

    Article  CAS  PubMed  Google Scholar 

  73. Pitts S, Perone E, Silver R (2003) Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. Am J Physiol Regul Integr Comp Physiol 285:R57–R67

    Article  CAS  PubMed  Google Scholar 

  74. Garcia JA, Zhang D, Estill SJ, Michnoff C, Rutter J, Reick M et al (2000) Impaired cued and contextual memory in NPAS2-deficient mice. Science 288:2226–2230

    Article  CAS  PubMed  Google Scholar 

  75. Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S et al (2003) Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301:379–383

    Article  CAS  PubMed  Google Scholar 

  76. Iijima M, Yamaguchi S, van der Horst G, Bonnefont X, Okamura H, Shibata S (2005) Altered food-anticipatory activity rhythm in Cryptochrome-deficient mice. Neurosci Res 52:66–173

    Article  Google Scholar 

  77. Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mPer1 and mPer2, to light. Cell 91:1055–1064

    Article  CAS  PubMed  Google Scholar 

  78. Feillet CA, Ripperger JA, Magnone MC, Dulloo A, Albrecht U, Challet E (2006) Lack of food anticipation in Per2 mutant mice. Curr Biol 16:2016–2022

    Article  CAS  PubMed  Google Scholar 

  79. Pendergast JS, Nakamura W, Friday RC, Hatanaka F, Takumi T, Yamazaki S (2009) Robust food anticipatory activity in BMAL1-deficient mice. PLoS One. doi:10.1371/journal.pone.0004860

    PubMed  PubMed Central  Google Scholar 

  80. Pendergast JS, Oda GA, Niswender KD, Yamazaki S (2012) Period determination in the food-entrainable and methamphetamine-sensitive circadian oscillator(s). Proc Natl Acad Sci U S A 109(35):14218–14223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  CAS  PubMed  Google Scholar 

  82. Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269–278

    Article  CAS  PubMed  Google Scholar 

  83. Escobar C, Díaz-Muñoz M, Encinas F, Aguilar-Roblero R (1998) Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. Am J Physiol 274:R1309–R1316

    CAS  PubMed  Google Scholar 

  84. Guo H, Brewer JM, Champhekar A, Harris RB, Bittman EL (2005) Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc Natl Acad Sci U S A 102:3111–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM et al (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347

    Article  CAS  PubMed  Google Scholar 

  86. Honma KI, Honma S, Hiroshige T (1983) Critical role of food amount for prefeeding corticosterone peak in rats. Am J Physiol 245:R339–R344

    CAS  PubMed  Google Scholar 

  87. Segall LA, Verwy M, Amir S (2008) Timed restricted feeding restores the rhythms of expression of the clock protein, Period 2, in the oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala in adrenalectomized rats. Neuroscience 157:52–56

    Article  CAS  PubMed  Google Scholar 

  88. Yamamoto T, Nakahata Y, Tanaka M, Yoshida M, Soma H, Shinohara K, Yasuda A, Mamine T, Takumi T (2005) Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. J Biol Chem 280:42036–42043

    Article  CAS  PubMed  Google Scholar 

  89. Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20:7128–7136

    Article  PubMed  PubMed Central  Google Scholar 

  90. LeSauter J, Hoque N, Weintraub M, Pfaff D, Silver R (2009) Stomach ghrelin-secreting cells as food entrainable circadian clocks. Proc Natl Acad Sci U S A 106:13582–13587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Szentirmai É, Kapas L, Sun Y, Smith RG, Krueger JM (2010) Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol 298:R467–R477

    Article  CAS  PubMed  Google Scholar 

  92. Gunapala KM, Gallardo CM, Hsu CT, Steele AD (2011) Single gene deletions of orexin, leptin, neuropeptide y, and ghrelin do not appreciably alter food anticipatory activity in mice. PLoS ONE 6:e18377. doi:10.1371/journal.pone.0018377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Davis JF, Choi DL, Clegg DJ, Benoit SC (2011) Signaling through the ghrelin receptor modulates hippocampal function and meal anticipation in mice. Physiol Behav 103:39–43

    Article  CAS  PubMed  Google Scholar 

  94. Patton D, Mistlberger R (2013) Circadian adaptations to meal timing: neuroendocrine mechanisms. Front Neurosci 7:185. doi:10.3389/fnins.2013.00185

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA, Montminy M, Kay SA (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hirota T, Lee JW, St John PC, Sawa M, Iwaisako K, Noguchi T, Pongsawakul PY, Sonntag T, Welsh DK, Brenner DA, Doyle FJ 3rd, Schultz PG, Kay SA (2012) Identification of small molecule activators of cryptochrome. Science 337:1094–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gutman R, Barnea M, Haviv L, Chapnik N, Froy O (2012) Peroxisome proliferator-activated receptor alpha (PPARalpha) activation advances locomotor activity and feeding daily rhythms in mice. Int J Obes (Lond) 36:1131–1134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Albrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Chavan, R., Albrecht, U., Okabe, T. (2017). Circadian Clocks, Metabolism, and Food-Entrained Rhythms. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_20

Download citation

Publish with us

Policies and ethics