Skip to main content

Circadian Photoentrainment Mechanism in Mammals

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour
  • 2584 Accesses

Abstract

Proper alignment of an organism’s behavior, physiology, and metabolism to the daily cyclical changes in light and dark is essential for health and well-being. This process is dependent upon a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment, melanopsin. The signaling pathways involved in melanopsin phototransduction are distinct from those used in rod and cone opsins and are more reminiscent of invertebrate opsins. Distributed throughout the retina, ipRGCs send monosynaptic projections from the retina to many regions of the brain to facilitate non-image-forming visual processes, but their glutamatergic inputs to the hypothalamic suprachiasmatic nucleus (SCN) are essential for entraining circadian rhythms in behavior and physiology to environmental lighting conditions. While nearly all cells in the mammalian body have cell-autonomous molecular clocks, the remarkable intercellular coupling among SCN neurons allows for the SCN to act as the master circadian oscillator and transduces light information into rhythmic electrical and chemical signals that facilitate photoentrainment. This chapter delves into the role of ipRGCs in circadian photoentrainment, the melanopsin signaling pathway, the interaction between ipRGCs and the heterogeneous SCN neurons, and the network properties and signaling pathways that underlie SCN function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111(45):16219–16224. doi:10.1073/pnas.1408886111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577. doi:10.1146/annurev-physiol-021909-135919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42(1):201–206

    Article  CAS  PubMed  Google Scholar 

  4. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69(6):1583–1586. doi:10.1073/pnas.69.6.1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiegand SJ, Terasawa EI (1982) Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendocrinology 34(6):395–404

    Article  CAS  PubMed  Google Scholar 

  6. Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7(June):1626–1638

    CAS  PubMed  Google Scholar 

  7. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science (New York, NY) 247(4945):975–978. doi:10.1126/science.2305266

    Article  CAS  Google Scholar 

  8. Panda S, Sato TK, Castrucci AM, Rollag MD, De Grip WJ, Hogenesch JB, Provencio I, Kay SA (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298(5601):2213–2216. doi:10.1126/science.1076848

    Article  CAS  PubMed  Google Scholar 

  9. Southey BR, Lee JE, Zamdborg L, Atkins N, Mitchell JW, Li M, Gillette MU, Kelleher NL, Sweedler JV (2014) Comparing label-free quantitative peptidomics approaches to characterize diurnal variation of peptides in the rat suprachiasmatic nucleus. Anal Chem 86(1):443–452. doi:10.1021/ac4023378

    Article  CAS  PubMed  Google Scholar 

  10. Kriegsfeld LJ, LeSauter J, Silver R (2004) Targeted microlesions reveal novel organization of the hamster suprachiasmatic nucleus. J Neurosci: Off J Soc Neurosci 24(10):2449–2457. doi:10.1523/JNEUROSCI.5323-03.2004

    Article  CAS  Google Scholar 

  11. Hu K, Scheer FAJL, Buijs RM, Shea SA (2008) The endogenous circadian pacemaker imparts a scale-invariant pattern of heart rate fluctuations across time scales spanning minutes to 24 hours. J Biol Rhythm 23(3):265–273. doi:10.1177/0748730408316166.The

    Article  Google Scholar 

  12. Reilly T, Waterhouse J, Edwards B (2005) Jet lag and air travel: implications for performance. Clin Sports Med 24(2):367–380. doi:10.1016/j.csm.2004.12.004

    Article  PubMed  Google Scholar 

  13. Schmidt C, Collette F, Cajochen C, Peigneux P (2007) A time to think: circadian rhythms in human cognition. Cogn Neuropsychol 24(7):755–789. doi:10.1080/02643290701754158

    Article  PubMed  Google Scholar 

  14. Takahashi JS, DeCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308(5955):186–188. doi:10.1038/308186a0

    Article  CAS  PubMed  Google Scholar 

  15. Keeler CE (1924) The inheritance of a retinal abnormality in white mice. Proc Natl Acad Sci U S A 10(7):329–333. doi:10.1073/pnas.10.7.329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keeler CE (1927) Iris movements in blind mice. Am J Physiol 81(1):107–112. http://ajplegacy.physiology.org/content/81/1/107.short

    Google Scholar 

  17. Lucas RJ, Freedman M, Munoz M, Garcia-Fernandez J-M, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284(5413):505–507. doi:10.1126/science.284.5413.505

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Fernandez JM, Jimenez AJ, Foster RG (1995) The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate Mice (rd/rd): implications for circadian organization. Neurosci Lett 187(1):33–36

    Article  CAS  PubMed  Google Scholar 

  19. Provencio I, Foster RG (1995) Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res 694(1–2):183–190. doi:10.1016/0006-8993(95)00694-L

    Article  CAS  PubMed  Google Scholar 

  20. Freedman MS (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284(5413):502–504. doi:10.1126/science.284.5413.502

    Article  CAS  PubMed  Google Scholar 

  21. Altimus CM, Güler AD, Alam NM, Arman AC, Prusky GT, Sampath AP, Hattar S (2010) Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 13(9):1107–1112. doi:10.1038/nn.2617. Nature Publishing Group

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Provencio I, Cooper HM, Foster RG (1998) Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol 395(4):417–439. doi:10.1002/(SICI)1096-9861(19980615)395:4<417::AID-CNE1>3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  23. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science (New York, NY) 295(5557):1070–1073. doi:10.1126/science.1067262

    Article  CAS  Google Scholar 

  24. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95(1):340–345. doi:10.1073/pnas.95.1.340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci: Off J Soc Neurosci 20(2):600–605. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=10632589{&}retmode=ref{&}cmd=prlinks

    CAS  Google Scholar 

  26. Pickard GE (1982) The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection. J Comp Neurol 211:65–83

    Article  CAS  PubMed  Google Scholar 

  27. Moore RY, Speh JC, Card JP (1995) The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352(3):351–366. doi:10.1002/cne.903520304

    Article  CAS  PubMed  Google Scholar 

  28. Hattar S, Liao H-W, Takao M, Berson DM, Yau K-W (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070. doi:10.1126/science.1069609.Melanopsin-Containing

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Panda, Satchidananda, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT et al (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science (New York, NY) 301(5632):525–527. doi:10.1126/science.1086179

    Article  CAS  Google Scholar 

  30. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J et al (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944):76–81. doi:10.1038/nature01761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci: Off J Soc Neurosci 18(21):8936–8946

    CAS  Google Scholar 

  32. Rodieck R (1998) The first steps in seeing. Sinauer Associates, Sunderland

    Google Scholar 

  33. Hecht S, Shlaer S, Pirenne MH (1942) Energy, quanta, and vision. J Gen Physiol 25(6):819–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Do MTH, Kang SH, Xue T, Zhong H, Liao H-W, Bergles DE, Yau K-W (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457(7227):281–287. doi:10.1038/nature07682. Nature Publishing Group

    Article  CAS  PubMed  Google Scholar 

  35. Tu DC, Zhang D, Demas J, Slutsky EB, Provencio I, Holy TE, Van Gelder RN (2005) Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48(6):987–999. doi:10.1016/j.neuron.2005.09.031

    Article  CAS  PubMed  Google Scholar 

  36. Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Schmedt C, Jegla T, Panda S (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image Forming visual responses. PLoS ONE 3(6), e2451. doi:10.1371/journal.pone.0002451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen S-K, LeGates T, Renna JM, Prusky GT, Berson DM, Hattar S (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67(1):49–60. doi:10.1016/j.neuron.2010.05.023. Elsevier Ltd

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Do, Hoang MT, Yau K-W (2010) Intrinsically photosensitive retinal ganglion cells. Physiol Rev 90:1547–1581. doi:10.1152/physrev.00013.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmidt TM, Chen S-K, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34(11):572–580. doi:10.1016/j.tins.2011.07.001. Elsevier Ltd

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lall GS, Revell VL, Momiji H, Enezi JA, Altimus CM, Güler AD, Aguilar C et al (2010) Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 66(3):417–428. doi:10.1016/j.neuron.2010.04.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kolb H (1979) The inner plexiform layer in the retina of the cat: electron microscopic observations. J Neurocytol 8(3):295–329. doi:10.1007/BF01236124

    Article  CAS  PubMed  Google Scholar 

  42. Østergaard J, Hannibal J, Fahrenkrug J (2007) Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. Investig Ophthalmol Vis Sci 48(8):3812–3820. doi:10.1167/iovs.06-1322

    Article  Google Scholar 

  43. Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460(3):380–393. doi:10.1002/cne.10652

    Article  PubMed  Google Scholar 

  44. Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, Meister M, Cepko CL, Roska B (2007) Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Curr Biol: CB 17(11):981–988. doi:10.1016/j.cub.2007.04.058

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt TM, Kofuji P (2011) Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse. J Comp Neurol 519(8):1492–1504. doi:10.1002/cne.22579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pickard GE, Baver SB, Malcolm DO, Sollars PJ (2009) Light-induced fos expression in intrinsically photosensitive retinal ganglion cells in melanopsin knockout (Opn4−/−) Mice. PLoS ONE 4(3). doi:10.1371/journal.pone.0004984

  47. Millhouse OE (1977) Optic chiasm collaterals afferent to the suprachiasmatic nucleus. Brain Res 137(2):351–355. doi:10.1016/0006-8993(77)90345-6

    Article  CAS  PubMed  Google Scholar 

  48. MunozLlamosas M, Huerta JJ, Cernuda-Cernuda R, García-Fernández JM (2000) Ontogeny of a photic response in the retina and suprachiasmatic nucleus in the mouse. Dev Brain Res 120(1):1–6. doi:10.1016/S0165-3806(99)00175-3

    Article  CAS  Google Scholar 

  49. Hannibal J, Fahrenkrug J (2004) Melanopsin containing retinal ganglion cells are light responsive from birth. Neuroreport 15(15):2317–2320. doi:10.1097/00001756-200410250-00003

    Article  CAS  PubMed  Google Scholar 

  50. Pickard GE (1985) Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neurosci Lett 55:211–217. doi:10.1016/0304-3940(85)90022-9

    Article  CAS  PubMed  Google Scholar 

  51. Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T (2005) Illumination of the melanopsin signaling pathway. Science (New York, NY) 307(5709):600–604. doi:10.1126/science.1105121

    Article  CAS  Google Scholar 

  52. Sekaran S, Lall GS, Ralphs KL, Wolstenholme AJ, Lucas RJ, Foster RG, Hankins MW (2007) 2-Aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo. J Neurosci 27(15):3981–3986. doi:10.1523/JNEUROSCI.4716-06.2007

    Article  CAS  PubMed  Google Scholar 

  53. Graham DM, Wong KY, Shapiro P, Frederick C, Pattabiraman K, Berson DM (2008) Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol 99(5):2522–2532. doi:10.1152/jn.01066.2007

    Article  CAS  PubMed  Google Scholar 

  54. Pires SS, Hughes S, Turton M, Melyan Z, Peirson SN, Zheng L, Kosmaoglou M et al (2009) Differential expression of two distinct functional isoforms of melanopsin (Opn4) in the mammalian retina. J Neurosci: Off J Soc Neurosci 29 39): 12332–12342. doi:10.1523/JNEUROSCI.2036-09.2009. Xue T, Do MTH, Riccio A, Jiang Z, Hsieh J, Wang HC, Merbs SL (2011) Melanopsin signalling in mammalian iris and retina. Nature 479(7371): 67–73. doi:10.1038/nature10567

  55. Hughes S, Jagannath A, Hickey D, Gatti S, Wood M, Peirson SN, Foster RG, Hankins MW (2015) Using siRNA to define functional interactions between melanopsin and multiple G protein partners. Cell Mol Life Sci 72:165–179. doi:10.1007/s00018-014-1664-6

    Article  CAS  PubMed  Google Scholar 

  56. Tarttelin EE, Bellingham J, Bibb LC, Foster RG, Hankins MW, Gregory-Evans K, Gregory-Evans CY, Wells DJ, Lucas RJ (2003) Expression of opsin genes early in ocular development of humans and mice. Exp Eye Res 76(3):393–396. doi:10.1016/S0014-4835(02)00300-7

    Article  CAS  PubMed  Google Scholar 

  57. Ratto GM, Robinson DW, Yan B, McNaughton PA (1991) Development of the light response in neonatal mammalian rods. Nature 351(6328):654–657. doi:10.1038/351654a0

    Article  CAS  PubMed  Google Scholar 

  58. Lupi D, Sekaran S, Jones SL, Hankins MW, Foster RG (2006) Light-evoked FOS induction within the Suprachiasmatic Nuclei (SCN) of melanopsin knockout (Opn4-/-) mice: a developmental study. Chronobiol Int 23(1–2):167–179. doi:10.1080/07420520500545870

    Article  CAS  PubMed  Google Scholar 

  59. Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A 93(2):589–595. doi:10.1073/pnas.93.2.589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T (1998) Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 125(23):4821–4833. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.biologists.com/Development/125/23/dev4057.html

    CAS  PubMed  Google Scholar 

  61. Liu W, Mo Z, Xiang M (2001) The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development. Proc Natl Acad Sci U S A 98(4):1649–1654. doi:10.1073/pnas.98.4.1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown NL, Patel S, Brzezinski J, Glaser T (2001) Math5 is required for retinal ganglion cell and optic nerve formation. Development (Cambridge, England) 128(13):2497–2508

    CAS  Google Scholar 

  63. Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L (2001) Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15:24–29. doi:10.1101/gad.855301.mined

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brzezinski JA IV, Brown NL, Tanikawa A, Bush RA, Sieving PA, Vitaterna MH, Takahashi JS, Glaser T (2005) Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice. Investig Ophthalmol Vis Sci 46(7):2540–2551. doi:10.1167/iovs.04-1123

    Article  Google Scholar 

  65. Gan L, Xiang M, Zhou L, Wagner DS, Klein WH, Nathans J (1996) POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc Natl Acad Sci U S A 93(9):3920–3925. doi:10.1073/pnas.93.9.3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell SM, Keithley EM, Rapaport DH, Ryan AF, Rosenfeld MG (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature. doi:10.1038/381603a0

    Google Scholar 

  67. Lin B, Wang SW, Masland RH (2004) Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron 43(4):475–485. doi:10.1016/j.neuron.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  68. Badea TC, Cahill H, Ecker J, Hattar S, Nathans J (2009) Distinct roles of transcription factors Brn3a and Brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61(6):852–864. doi:10.1016/j.neuron.2009.01.020. Elsevier Ltd

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen S-K, Badea TC, Hattar S (2011) Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476(7358):92–95. doi:10.1038/nature10206. Nature Publishing Group

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ebling FJP (1996) The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog Neurobiol 50(2–3):109–132. doi:10.1016/S0301-0082(96)00032-9

    Article  CAS  PubMed  Google Scholar 

  71. Ding JM, Chen D, Weber T, Faiman LE, Rea MA, Gillete MU (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266(5191):1713–1717

    Article  CAS  PubMed  Google Scholar 

  72. Abe H, Rusak B, Robertson HA (1992) NMDA and Non-NMDA receptor antagonists inhibit photic induction of Fos protein in the hamster suprachiasmatic nucleus. Brain Res Bull 28(5):831–835. doi:10.1016/0361-9230(92)90269-4

    Article  CAS  PubMed  Google Scholar 

  73. Gompf HS, Fuller PM, Hattar S, Saper CB, Lu J (2014) Impaired circadian photosensitivity in mice lacking glutamate transmission from retinal melanopsin cells. J Biol Rhythm XX(X):1–7. doi:10.1177/0748730414561545

    Google Scholar 

  74. Hannibal J, Moller M, Ottersen OP, Fahrenkrug J (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol 418(2):147–155. doi:10.1002/(SICI)1096-9861(20000306)418:2<147::AID-CNE2>3.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  75. Michel S, Itri J, Han JH, Gniotczynski K, Colwell CS (2006) Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neurosci 7:15. doi:10.1186/1471-2202-7-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Nielsen HS, Hannibal J, Knudsen SM, Fahrenkrug J (2001) Pituitary adenylate cyclase-activating polypeptide induces period1 and period2 gene expression in the rat suprachiasmatic nucleus during late night. Neuroscience 103(2):433–441. doi:10.1016/S0306-4522(00)00563-7

    Article  CAS  PubMed  Google Scholar 

  77. Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU (1999) Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci U S A 96(23):13468–13473. doi:10.1073/pnas.96.23.13468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hannibal J, Jamen F, Nielsen HS, Journot L, Brabet P, Fahrenkrug J (2001) Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J Neurosci 21(13):4883–4890. http://www.jneurosci.org/content/21/13/4883\nhttp://www.jneurosci.org/content/21/13/4883.full.pdf\nhttp://www.jneurosci.org/content/21/13/4883.long\nhttp://www.ncbi.nlm.nih.gov/pubmed/11425915

    Google Scholar 

  79. Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150(1):112–116. doi:10.1016/0304-3940(93)90120-A

    Article  CAS  PubMed  Google Scholar 

  80. Strecker GJ, Wuarin J-P, Dudek FE, Hong SK et al (2009) GABA A -mediated local synaptic pathways connect neurons in the rat suprachiasmatic nucleus. Am J Physiol Regul Integr Comp Physiol:2217–2220

    Google Scholar 

  81. Leak RK, Moore RY (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433:312–334

    Article  CAS  PubMed  Google Scholar 

  82. Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916(1–2):172–191. http://www.ncbi.nlm.nih.gov/pubmed/11597605

    Article  CAS  PubMed  Google Scholar 

  83. Yan L, Okamura H (2002) Gradients in the circadian expression of Per1 and Per2 genes in the rat suprachiasmatic nucleus. Eur J Neurosci 15(7):1153–1162. http://www.ncbi.nlm.nih.gov/pubmed/11982626

    Article  PubMed  Google Scholar 

  84. Ibata Y, Takahashi Y, Okamura H, Kawakami F, Terubayashi H, Kubo T, Yanaihara N (1989) Vasoactive Intestinal Peptide (VIP)-like immunoreactive neurons located in the rat suprachiasmatic nucleus receive a direct retinal projection. Neurosci Lett 97(1–2):1–5. doi:10.1016/0304-3940(89)90129-8

    Article  CAS  PubMed  Google Scholar 

  85. Tanaka M, Ichitani Y, Okamura H, Tanaka Y, Ibata Y (1993) The direct retinal projection to VIP neuronal elements in the rat SCN. Brain Res Bull 31(6):637–640. doi:10.1016/0361-9230(93)90134-W

    Article  CAS  PubMed  Google Scholar 

  86. Meijer JH, Rietveld WJ (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69:671–707

    CAS  PubMed  Google Scholar 

  87. Mikkelsen JD, Larsen PJ, Sorensen GG, Woldbye D, Bolwig TG, Hastings MH, Ebling FJP (1994) A dual-immunocytochemical method to localize c-Fos protein in specific neurons based on their content of neuropeptides and connectivity. Histochemistry 101(4):245–251. doi:10.1007/BF00315911

    Article  CAS  PubMed  Google Scholar 

  88. Sutin EL, Kilduff TS (1992) Circadian and light-induced expression of immediate early gene mRNAs in the rat suprachiasmatic nucleus. Brain Res 15(3–4):281–290. http://www.ncbi.nlm.nih.gov/pubmed/1331682

    Article  CAS  Google Scholar 

  89. Honrado GI, Johnson RS, Golombek DA, Spiegelman BM, Papaioannou VE, Ralph MR (1996) The circadian system of c-Fos deficient mice. J Comp Physiol A Sens Neural Behav Physiol 178(4):563–570. http://www.ncbi.nlm.nih.gov/pubmed/20060009

    Article  CAS  Google Scholar 

  90. Yoo S-H, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM et al (2004) Period2: luciferase real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues published by: National Academy of Sciences Linked References Are Available on JSTOR for This Article: PERIOD2 : LUCIFE. Proc Natl Acad Sci USA 101(15):5339–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302(5649):1408–1412. doi:10.1126/science.1089287

    Article  CAS  PubMed  Google Scholar 

  92. Noguchi T, Watanabe K, Ogura A, Yamaoka S (2004) The clock in the dorsal suprachiasmatic nucleus runs faster than that in the ventral. Eur J Neurosci 20(11):3199–3202. doi:10.1111/j.1460-9568.2004.03784.x

    Article  PubMed  Google Scholar 

  93. Ko CH, Yamada YR, Welsh DK, Buhr ED, Liu AC, Zhang EE, Ralph MR, Kay SA, Forger DB, Takahashi JS (2010) Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol 8(10):1–19. doi:10.1371/journal.pbio.1000513

    Article  Google Scholar 

  94. Buhr ED, Yoo S-H, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 281:379–385

    Article  CAS  Google Scholar 

  95. Munoz M, Pierson SN, Hankins MW, Foster RG (2005) Long-term constant light induces constitutive elevated expression of mPER2 protein in the murine SCN: a molecular basis for Aschoff’s rule? J Biol Rhythm 20(1):3–14. doi:10.1177/0748730404272858

    Article  CAS  Google Scholar 

  96. Mickman CT, Stubblefield JJS, Harrington ME, Nelson DE, Stubblefield JJS, Harrington ME, Nelson DE (2008) Photoperiod alters phase difference between activity onset in vivo and mPer2::luc Peak in vitro. Am J Physiol Regul Integr Comp Physiol 295(5):1688–1694. doi:10.1152/ajpregu.90510.2008

    Article  CAS  Google Scholar 

  97. Mrugala M, Zlomanczuk P, Jagota A, Schwartz WJ (2000) Rhythmic multiunit neural activity in slices of hamster suprachiasmatic nucleus reflect prior photoperiod. Am J Physiol Regul Integr Comp Physiol 278(4):R987–R994. http://www.ncbi.nlm.nih.gov/pubmed/10749788

    CAS  PubMed  Google Scholar 

  98. VanderLeest HT, Houben T, Michel S, Deboer T, Albus H, Vansteensel MJ, Block GD, Meijer JH (2007) Seasonal encoding by the circadian pacemaker of the SCN. Curr Biol 17(5):468–473. doi:10.1016/j.cub.2007.01.048

    Article  CAS  PubMed  Google Scholar 

  99. Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF et al (2002) The VPAC 2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508

    Article  CAS  PubMed  Google Scholar 

  100. An, S, Harang R, Meeker K, Granados-Fuentes D, Tsai CA, Mazuski C, Kim J, Doyle FJ, Petzold LR, Herzog ED (2013) A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1307088110

  101. Davidson AJ, Castanon-Cervantes O, Leise TL, Molyneux PC, Harrington ME (2009) Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system. Eur J Neurosci 29(1):171–180. doi:10.1111/j.1460-9568.2008.06534.x

    Article  PubMed  Google Scholar 

  102. Crosio C, Cermakian N, David Allis C, Sassone-corsi P (2000) Light induces chromatin modification in cells of the mammalian circadian clock. Nature 3(12):1241–1247

    CAS  Google Scholar 

  103. Colwell CS (2001) NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system. Eur J Neurosci 13(7):1420–1428. doi:10.1046/j.0953-816X.2001.01517.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Meijer JH, Schwartz WJ (2003) J Biol Rhythm 18(3):235–249. doi:10.1177/0748730403253370

    Article  Google Scholar 

  105. Jagannath A, Butler R, Godinho SIH, Couch Y, Brown LA, Vasudevan SR, Flanagan KC et al (2013) The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell 154(5):1100–1111. doi:10.1016/j.cell.2013.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hatori M, Gill S, Mure LS, Goulding M, O’Leary DDM, Panda S (2014) Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. eLife 3, e03357. doi:10.7554/eLife.03357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Xu J, Cohen BN, Zhu Y, Dziewczapolski G, Panda S, Lester HA, Heinemann SF, Contractor A (2011) Altered activity-rest patterns in mice with a human autosomal-dominant nocturnal frontal lobe epilepsy mutation in the beta2 nicotinic receptor. Mol Psychiatry 16(10):1048–1061. doi:mp201078 [pii]\r10.1038/mp.2010.78

    Google Scholar 

  108. Cheng, Hai Ying M, Obrietan K, Cain SW, Lee BY, Agostino PV, Joza NA, Harrington ME, Ralph MR, Penninger JM (2004) Dexras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43(5):715–728. doi:10.1016/j.neuron.2004.08.021

    Article  CAS  PubMed  Google Scholar 

  109. Cao, Ruifeng, Robinson B, Xu H, Gkogkas C, Khoutorsky A, Alain T, Yanagiya A et al (2013) Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron 79(4):712–724. doi:10.1016/j.neuron.2013.06.026. Elsevier Inc

    Article  CAS  PubMed  Google Scholar 

  110. Hannibal J, Brabet P, Fahrenkrug J (2008) Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking. Am J Physiol Regul Integr Comp Physiol 295(6):R2050–R2058. doi:10.1152/ajpregu.90563.2008

    Article  CAS  PubMed  Google Scholar 

  111. Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelièvre V, Hu Z, Waschek JA (2004) Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol 287(5):R1194–R1201. doi:10.1152/ajpregu.00268.2004

    Article  CAS  PubMed  Google Scholar 

  112. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBa controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251–260. doi:10.1016/S0092-8674(02)00825-5

    Article  CAS  PubMed  Google Scholar 

  113. Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, Fustin J-M et al (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science (New York, NY) 342(6154):85–90. doi:10.1126/science.1238599

    Article  CAS  Google Scholar 

  114. Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, Hu Z, Liu X, Waschek JA (2003) Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol 285(5):R939–R949. doi:10.1152/ajpregu.00200.2003

    Article  CAS  PubMed  Google Scholar 

  115. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8(4):476–483. doi:10.1038/nn1419

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Shen S, Spratt C, Sheward WJ, Kallo I, West K, Morrison CF, Coen CW, Marston HM, Harmar AJ (2000) Overexpression of the human VPAC2 receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proc Natl Acad Sci U S A 97(21):11575–11580. doi:10.1073/pnas.97.21.11575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satchidananda Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Liu, Y.H., Panda, S. (2017). Circadian Photoentrainment Mechanism in Mammals. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_17

Download citation

Publish with us

Policies and ethics