Skip to main content

Interaction Between Central and Peripheral Clocks in Mammals

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

Nearly all physiological processes in mammalian organisms undergo daily oscillations. These rhythms are not just driven by environmental changes created by the earth’s rotation around its own axis, but are coordinated by a sophisticated, hierarchically organized timing system. In fact, self-sustained and cell-autonomous clocks are ticking in nearly all body cells and even in cells kept in tissue culture. When monitored in individual cells, the period lengths of the cycles vary from cell to cell and, over time, even within the same cell. In animals, however, the cellular clocks are synchronized within and between organs by numerous signaling pathways governed by cyclic signals controlled by the master circadian pacemaker in the brain’s suprachiasmatic nucleus (SCN) and the environment. This chapter reviews some of our knowledge on how phase coherence is established in the body. Obviously, only synchronized circadian clocks can produces overt rhythms in physiology and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coomans CP, Ramkisoensing A, Meijer JH (2015) The suprachiasmatic nuclei as a seasonal clock. Front Neuroendocrinol 37:29–42

    Article  PubMed  Google Scholar 

  2. Wood S, Loudon A (2014) Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary. J Endocrinol 222:R39–R59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borbely AA, Daan S, Wirz-Justice A, Deboer T (2016) The two-process model of sleep regulation: a reappraisal. J Sleep Res 25:131–143

    Article  PubMed  Google Scholar 

  4. Aschoff J, Wever R (1976) Human circadian rhythms: a multioscillatory system. Fed Proc 35:236–232

    CAS  PubMed  Google Scholar 

  5. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  CAS  PubMed  Google Scholar 

  6. Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24:90–99

    Article  CAS  PubMed  Google Scholar 

  7. Birky TL, Bray MS (2014) Understanding circadian gene function: animal models of tissue-specific circadian disruption. IUBMB Life 66:34–41

    Article  CAS  PubMed  Google Scholar 

  8. Buhr ED, Takahashi JS (2013) Molecular components of the Mammalian circadian clock. Handb Exp Pharmacol 217:3–27

    Article  CAS  Google Scholar 

  9. Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, Green CB, Zhang H, Takahashi JS (2012) Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337:189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A, Prabu JR, Benda C, Kramer A, Wolf E (2014) Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157:1203–1215

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Wu Y, Li L, Su XD (2013) Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res 23:213–224

    Article  PubMed  Google Scholar 

  12. Kim JY, Kwak PB, Gebert M, Duong HA, Weitz CJ (2015) Purification and analysis of PERIOD protein complexes of the mammalian circadian clock. Methods Enzymol 551:197–210

    Article  CAS  PubMed  Google Scholar 

  13. Kim JY, Kwak PB, Weitz CJ (2014) Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor. Mol Cell 56:738–748

    Article  CAS  PubMed  Google Scholar 

  14. Tomita J, Nakajima M, Kondo T, Iwasaki H (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251–254

    Article  CAS  PubMed  Google Scholar 

  15. Egli M, Johnson CH (2013) A circadian clock nanomachine that runs without transcription or translation. Curr Opin Neurobiol 23:732–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kitayama Y, Nishiwaki T, Terauchi K, Kondo T (2008) Dual KaiC-based oscillations constitute the circadian system of cyanobacteria. Genes Dev 22:1513–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cho CS, Yoon HJ, Kim JY, Woo HA, Rhee SG (2014) Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. Proc Natl Acad Sci U S A 111:12043–12048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA, Thompson CB (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112:1493–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA et al (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–464

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hendriks GJ, Gaidatzis D, Aeschimann F, Grosshans H (2014) Extensive oscillatory gene expression during C. elegans larval development. Mol Cell 53:380–392

    Article  CAS  PubMed  Google Scholar 

  22. Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706

    Article  CAS  PubMed  Google Scholar 

  23. Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272:419–421

    Article  CAS  PubMed  Google Scholar 

  24. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937

    Article  CAS  PubMed  Google Scholar 

  25. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705

    Article  CAS  PubMed  Google Scholar 

  26. Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14:2289–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  CAS  PubMed  Google Scholar 

  28. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ et al (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101:5339–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alvarez JD, Sehgal A (2005) The thymus is similar to the testis in its pattern of circadian clock gene expression. J Biol Rhythms 20:111–121

    Article  CAS  PubMed  Google Scholar 

  30. Morse D, Cermakian N, Brancorsini S, Parvinen M, Sassone-Corsi P (2003) No circadian rhythms in testis: period 1 expression is clock independent and developmentally regulated in the mouse. Mol Endocrinol 17:141–151

    Article  CAS  PubMed  Google Scholar 

  31. Chen Z, Odstrcil EA, Tu BP, McKnight SL (2007) Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316:1916–1919

    Article  CAS  PubMed  Google Scholar 

  32. Bieler J, Cannavo R, Gustafson K, Gobet C, Gatfield D, Naef F (2014) Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol Syst Biol 10:739

    Article  PubMed  PubMed Central  Google Scholar 

  33. Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–137

    Article  CAS  PubMed  Google Scholar 

  34. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  CAS  PubMed  Google Scholar 

  36. Dibner C, Schibler U (2015) Circadian timing of metabolism in animal models and humans. J Intern Med 277:513–527

    Article  CAS  PubMed  Google Scholar 

  37. Hastings MH, Brancaccio M, Maywood ES (2014) Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus. J Neuroendocrinol 26:2–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meijer JH, Michel S (2015) Neurophysiological analysis of the suprachiasmatic nucleus: a challenge at multiple levels. Methods Enzymol 552:75–102

    Article  CAS  PubMed  Google Scholar 

  39. Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saini C, Liani A, Curie T, Gos P, Kreppel F, Emmenegger Y, Bonacina L, Wolf JP, Poget YA, Franken P et al (2013) Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev 27:1526–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sheward WJ, Maywood ES, French KL, Horn JM, Hastings MH, Seckl JR, Holmes MC, Harmar AJ (2007) Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice. J Neurosci 27:4351–4358

    Article  CAS  PubMed  Google Scholar 

  42. Lauschke VM, Tsiairis CD, Francois P, Aulehla A (2013) Scaling of embryonic patterning based on phase-gradient encoding. Nature 493:101–105

    Article  PubMed  Google Scholar 

  43. Harima Y, Imayoshi I, Shimojo H, Kobayashi T, Kageyama R (2014) The roles and mechanism of ultradian oscillatory expression of the mouse Hes genes. Semin Cell Dev Biol 34:85–90

    Article  CAS  PubMed  Google Scholar 

  44. Schibler U, Gotic I, Saini C, Gos P, Curie T, Emmenegger Y, Sinturel F, Gosselin P, Gerber A, Fleury-Olela F et al (2015) Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb Symp Quant Biol 80:223–232

    Article  PubMed  Google Scholar 

  45. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baggs JE, Hogenesch JB (2010) Genomics and systems approaches in the mammalian circadian clock. Curr Opin Genet Dev 20:581–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ye R, Selby CP, Chiou YY, Ozkan-Dagliyan I, Gaddameedhi S, Sancar A (2014) Dual modes of CLOCK: BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev 28:1989–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeBruyne JP, Weaver DR, Reppert SM (2007) Peripheral circadian oscillators require CLOCK. Curr Biol 17:R538–R539

    Article  CAS  PubMed  Google Scholar 

  49. Debruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM (2006) A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50:465–477

    Article  CAS  PubMed  Google Scholar 

  50. DeBruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10:543–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5, e34

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schaeren-Wiemers N, Andre E, Kapfhammer JP, Becker-Andre M (1997) The expression pattern of the orphan nuclear receptor RORbeta in the developing and adult rat nervous system suggests a role in the processing of sensory information and in circadian rhythm. Eur J Neurosci 9:2687–2701

    Article  CAS  PubMed  Google Scholar 

  53. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  CAS  PubMed  Google Scholar 

  55. Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583

    Article  CAS  PubMed  Google Scholar 

  56. Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330:379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347

    Article  CAS  PubMed  Google Scholar 

  58. Rosenfeld P, Van Eekelen JA, Levine S, De Kloet ER (1988) Ontogeny of the type 2 glucocorticoid receptor in discrete rat brain regions: an immunocytochemical study. Brain Res 470:119–127

    Article  CAS  PubMed  Google Scholar 

  59. Shaw J, Brody S (2000) Circadian rhythms in Neurospora: a new measurement, the reset zone. J Biol Rhythms 15:225–240

    Article  CAS  PubMed  Google Scholar 

  60. Sato M, Murakami M, Node K, Matsumura R, Akashi M (2014) The role of the endocrine system in feeding-induced tissue-specific circadian entrainment. Cell Rep 8:393–401

    Article  CAS  PubMed  Google Scholar 

  61. Balsalobre A, Marcacci L, Schibler U (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10:1291–1294

    Article  CAS  PubMed  Google Scholar 

  62. Nonaka H, Emoto N, Ikeda K, Fukuya H, Rohman MS, Raharjo SB, Yagita K, Okamura H, Yokoyama M (2001) Angiotensin II induces circadian gene expression of clock genes in cultured vascular smooth muscle cells. Circulation 104:1746–1748

    Article  CAS  PubMed  Google Scholar 

  63. Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y (2002) Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J Biol Chem 277:44244–44251

    Article  CAS  PubMed  Google Scholar 

  64. Stratmann M, Schibler U (2006) Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythms 21:494–506

    Article  CAS  PubMed  Google Scholar 

  65. Koyanagi S, Hamdan AM, Horiguchi M, Kusunose N, Okamoto A, Matsunaga N, Ohdo S (2011) cAMP-response element (CRE)-mediated transcription by activating transcription factor-4 (ATF4) is essential for circadian expression of the Period2 gene. J Biol Chem 286:32416–32423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pando MP, Morse D, Cermakian N, Sassone-Corsi P (2002) Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 110:107–117

    Article  CAS  PubMed  Google Scholar 

  67. Saini C, Morf J, Stratmann M, Gos P, Schibler U (2012) Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev 26:567–580

    Google Scholar 

  68. Bromberg Z, Goloubinoff P, Saidi Y, Weiss YG (2013) The membrane-associated transient receptor potential vanilloid channel is the central heat shock receptor controlling the cellular heat shock response in epithelial cells. PLoS ONE 8, e57149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wolfgang W, Simoni A, Gentile C, Stanewsky R (2013) The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster. Proc Biol Sci 280:20130959

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu Y, Hu W, Murakawa Y, Yin J, Wang G, Landthaler M, Yan J (2013) Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation. Sci Rep 3:2054

    PubMed  PubMed Central  Google Scholar 

  71. Morf J, Rey G, Schneider K, Stratmann M, Fujita J, Naef F, Schibler U (2012) Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338:379–383

    Article  CAS  PubMed  Google Scholar 

  72. Husse J, Leliavski A, Tsang AH, Oster H, Eichele G (2014) The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. FASEB J 28:4950–4960

    Article  CAS  PubMed  Google Scholar 

  73. Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, Sato TR, Wang X, Bradfield CA, Takahashi JS (2014) Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. Elife 3

    Google Scholar 

  74. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chaves I, van der Horst GT, Schellevis R, Nijman RM, Koerkamp MG, Holstege FC, Smidt MP, Hoekman MF (2014) Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription. Curr Biol 24:1248–1255

    Article  CAS  PubMed  Google Scholar 

  76. Yamajuku D, Inagaki T, Haruma T, Okubo S, Kataoka Y, Kobayashi S, Ikegami K, Laurent T, Kojima T, Noutomi K et al (2012) Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. Sci Rep 2:439

    Article  PubMed  PubMed Central  Google Scholar 

  77. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  78. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U (2010) Poly(ADP-Ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–953

    Article  CAS  PubMed  Google Scholar 

  80. Zhao H, Sifakis EG, Sumida N, Millan-Arino L, Scholz BA, Svensson JP, Chen X, Ronnegren AL, Mallet de Lima CD, Varnoosfaderani FS et al (2015) PARP1- and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription. Mol Cell 59:984–997

    Article  CAS  PubMed  Google Scholar 

  81. van der Veen DR, Minh NL, Gos P, Arneric M, Gerkema MP, Schibler U (2006) Impact of behavior on central and peripheral circadian clocks in the common vole Microtus arvalis, a mammal with ultradian rhythms. Proc Natl Acad Sci U S A 103:3393–3398

    Article  PubMed  PubMed Central  Google Scholar 

  82. Su Y, Cailotto C, Foppen E, Jansen R, Zhang Z, Buijs R, Fliers E, Kalsbeek A (2015) The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver. Mol Cell Endocrinol

    Google Scholar 

  83. Wu T, Ni Y, Kato H, Fu Z (2010) Feeding-induced rapid resetting of the hepatic circadian clock is associated with acute induction of Per2 and Dec1 transcription in rats. Chronobiol Int 27:1–18

    Article  PubMed  Google Scholar 

  84. Guo H, Brewer JM, Champhekar A, Harris RB, Bittman EL (2005) Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc Natl Acad Sci U S A 102:3111–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20:7128–7136

    Article  PubMed  PubMed Central  Google Scholar 

  86. Reddy AB, Maywood ES, Karp NA, King VM, Inoue Y, Gonzalez FJ, Lilley KS, Kyriacou CP, Hastings MH (2007) Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology 45:1478–1488

    Article  CAS  PubMed  Google Scholar 

  87. Gerber A, Esnault C, Aubert G, Treisman R, Pralong F, Schibler U (2013) Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity. Cell 152:492–503

    Article  CAS  PubMed  Google Scholar 

  88. Posern G, Treisman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16:588–596

    Article  CAS  PubMed  Google Scholar 

  89. Esnault C, Stewart A, Gualdrini F, East P, Horswell S, Matthews N, Treisman R (2014) Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 28:943–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gosselin P, Rando G, Fleury-Olela F, Schibler U (2016) Unbiased identification of signalactivated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STARPROM). Genes Dev 30:1895–1907

    Google Scholar 

  91. Reinke H, Saini C, Fleury-Olela F, Dibner C, Benjamin IJ, Schibler U (2008) Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev 22:331–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gotic I, Omidi S, Fleury-Olela F, Molina N, Naef F, Schibler U (2016) Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp. Genes Dev 30:2005–2017

    Google Scholar 

  93. Emes RD, Goodstadt L, Winter EE, Ponting CP (2003) Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum Mol Genet 12:701–709

    Article  CAS  PubMed  Google Scholar 

  94. Go Y, Niimura Y (2008) Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol Biol Evol 25:1897–1907

    Article  CAS  PubMed  Google Scholar 

  95. Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, Williams C, Moss S, Sehgal A (2008) The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythms 23:26–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu Y, Johnson BP, Shen AL, Wallisser JA, Krentz KJ, Moran SM, Sullivan R, Glover E, Parlow AF, Drinkwater NR et al (2014) Loss of BMAL1 in ovarian steroidogenic cells results in implantation failure in female mice. Proc Natl Acad Sci U S A 111:14295–14300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A 95:8660–8664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481–1486

    Article  CAS  PubMed  Google Scholar 

  99. Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  100. Spoelstra K, Wikelski M, Daan S, Loudon AS, Hau M (2016) Natural selection against a circadian clock gene mutation in mice. Proc Natl Acad Sci U S A 113:686–691

    Article  CAS  PubMed  Google Scholar 

  101. Liu AC, Lewis WG, Kay SA (2007) Mammalian circadian signaling networks and therapeutic targets. Nat Chem Biol 3:630–639

    Article  CAS  PubMed  Google Scholar 

  102. Dallmann R, DeBruyne JP, Weaver DR (2011) Photic resetting and entrainment in CLOCK-deficient mice. J Biol Rhythms 26:390–401

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gerber A, Saini C, Curie T, Emmenegger Y, Rando G, Gosselin P, Gotic I, Gos P, Franken P, Schibler U (2015) The systemic control of circadian gene expression. Diabetes Obes Metab 17(Suppl 1):23–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Cold Spring Harbor Press for the permission of having reprinted or adapted some manuscript sections from [44] and Nicolas Roggli for the artwork. Research in my laboratory was supported by the European Research Council (ERC-AdG TimeSignal), the Swiss National Science Foundation (SNF 31-113565, SNF 31-128656/1, and the NCCR program grant Frontiers in Genetics), the State of Geneva, and the Louis-Jeantet Foundation of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ueli Schibler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Schibler, U. (2017). Interaction Between Central and Peripheral Clocks in Mammals. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_16

Download citation

Publish with us

Policies and ethics